Effect of Microstructural Anisotropy of PM Precursors on the Characteristic Expansion of Aluminum Foams


This work investigates the causes of the anisotropic early expansion (below the melting point) of powder metallurgical (PM) aluminum foam precursors by evaluating the crystallographic anisotropy induced during the production of the precursor materials. A varied group of precursors prepared using different parameters and techniques (direct powder extrusion and hot uniaxial compression) has been investigated. Multidirectional foaming expansion has been registered in situ by means of the optical expandometry technique, while X-ray diffraction has been used to characterize the preferred crystallographic orientation (texture) of the pressed powders. The results point to a clear correlation between the expansion anisotropy and the microstructural crystallographic anisotropy of the precursors. Although this correlation is not a direct cause–effect phenomenon, it is a good indicator of intrinsic precursor characteristics, such as densification and powder interparticle bonding, which govern the expansion behavior during the early stages when the material is still in a solid or semisolid state.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    C.J. Yu, H.H. Eifert, J. Banhart, and J. Baumeister: Mater. Res. Innovations, 1998, vol. 2, pp. 181-88.

    Article  CAS  Google Scholar 

  2. 2.

    M.F. Ashby: Metal Foams: A Design Guide, 1st ed., Butterworth-Heinemann, Oxford, U.K., 2000, pp. 217-33.

    Google Scholar 

  3. 3.

    J. Banhart: Prog. Mater. Sci., 2001, vol. 46, pp. 559-632.

    Article  CAS  Google Scholar 

  4. 4.

    F. Simancik: Metal Foams and Porous Metal Structures, J. Banhart, M.F. Ashby, and N.A. Fleck, eds., MIT Verlag, Bremen, 1999, pp. 235–40.

  5. 5.

    E. Koza, M. Leonowicz, S. Wojciechowski, and F. Simancik: Mater. Lett., 2003, vol. 58, pp. 132–35.

  6. 6.

    U. Ramamurthy and A. Paul: Acta Mater., 2004, vol. 52, pp. 869-76.

    Article  Google Scholar 

  7. 7.

    M. Nosko, F. Simancik, and R. Florek: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5900-08.

    Article  Google Scholar 

  8. 8.

    K.Y.G. McCullough, N.A. Fleck, and M.F. Ashby: Acta Mater., 1999, vol. 47, pp. 2331-43.

    Article  CAS  Google Scholar 

  9. 9.

    J. Lázaro, E. Solórzano, J.A. de Saja, and M.A. Rodríguez-Pérez: J. Mater. Sci. In press.

  10. 10.

    B. Matijasevic and J. Banhart: Scripta Mater., 2006, vol. 54, pp. 503-08.

    Article  CAS  Google Scholar 

  11. 11.

    F. Zeppelin, M. Hirscher, H. Stanzick, and J. Banhart: Compos. Sci. Technol., 2003, vol. 63, pp. 2293-2300.

    Article  Google Scholar 

  12. 12.

    A.R. Kennedy and V.H. Lopez: Mater. Sci. Eng. A, 2003, vol. 357, pp. 258-63.

    Article  Google Scholar 

  13. 13.

    B. Matijasevic, J. Banhart, S. Fiechter, O. Goerke, and N. Wanderka: Acta Mater., 2006, vol. 54, pp. 1887-1900.

    Article  Google Scholar 

  14. 14.

    F. Garcia-Moreno and J. Banhart: Colloids Surf. A, 2007, vol. 309, pp. 264-69.

    Article  CAS  Google Scholar 

  15. 15.

    C. Jimenez, F. Garcia-Moreno, M. Mukherjee, O. Goerke, and J. Banhart: Scripta Mater., 2009, vol. 61, pp. 552-55.

    Article  CAS  Google Scholar 

  16. 16.

    M. Mukherjee, F. Garcia-Moreno, C. Jimenez, and J. Banhart: Adv. Eng. Mater., 2010, vol. 12, pp. 472-77.

    Article  CAS  Google Scholar 

  17. 17.

    M.A. Rodriguez-Perez, E. Solórzano, J.A. de Saja, and F. Garcia-Moreno: Porous Metals and Metallic Foams, L.P. Lefebvre, J. Banhart, and D. Dunand, eds., DEStech Pub., Lancaster, PA, 2008, pp. 75–78.

  18. 18.

    L. Helfen, T. Baumbach, H. Stanzick, J. Banhart, A. Elmoutaouakkil, and P. Cloetens: Adv. Eng. Mater., 2002, vol. 4, pp. 808-13.

    Article  CAS  Google Scholar 

  19. 19.

    A.R. Kennedy: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1555-57.

    Article  CAS  Google Scholar 

  20. 20.

    A.R. Kennedy: Powder Metall., 2002, vol. 45, pp. 75-79.

    Article  Google Scholar 

  21. 21.

    H.M. Helwig, S. Hiller, F. Garcia-Moreno, and J. Banhart: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 755-67.

    Article  CAS  Google Scholar 

  22. 22.

    S. Asavavisithchai and A.R. Kennedy: Adv. Eng. Mater., 2006, vol. 8, pp. 810-15.

    Article  CAS  Google Scholar 

  23. 23.

    S.W. Youn and C.G. Kang: J. Eng. Manuf., 2003, vol. 217, pp. 201-211.

    Article  CAS  Google Scholar 

  24. 24.

    C. Körner, F. Berger, M. Arnold, C. Stadelmann, and R.F. Singer: Mater. Sci. Technol., 2000, vol. 16, pp. 781-84.

    Article  Google Scholar 

  25. 25.

    D. Lehmhus and M. Busse: Adv. Eng. Mater., 2004, vol. 6, pp. 391-96.

    Article  CAS  Google Scholar 

  26. 26.

    H.M. Helwig, F. Garcia-Moreno, and J. Banhart: J. Mater. Sci., 2011, vol. 46, pp. 5227-36.

    Article  CAS  Google Scholar 

  27. 27.

    S.W. Youn and C.G. Kang: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 769-76.

    Article  CAS  Google Scholar 

  28. 28.

    P.M. Proa-Flores, G. Mendoza-Suarez, and R.A.L. Drew: J. Mater. Sci., 2012, vol. 47, pp. 455-64.

    Article  CAS  Google Scholar 

  29. 29.

    L. Bonaccorsi and E. Proverbio: Adv. Eng. Mater., 2006, vol. 8, pp. 864-69.

    Article  CAS  Google Scholar 

  30. 30.

    L. Helfen, T. Baumbach, P. Pernot, P. Cloetens, H. Stanzick, K. Schladitz, and J. Banhart: Appl. Phys. Lett., 2005, vol. 86, pp. 231907-1– 231907-1-3.

  31. 31.

    W.D. Jones: Fundamental Principles of Powder Metallurgy, Edward Arnold Ltd., London, U.K., 1960.

  32. 32.

    B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, Boston, MA, 1956, pp. 272-76.

    Google Scholar 

  33. 33.

    M.D. Abramoff, P.J. Magelhaes, and S.J. Ram: Biophys. Int., 2004, vol. 11, pp. 36-42.

    Google Scholar 

  34. 34.

    E. Solórzano, M. Antunes, C. Saiz-Arroyo, M.A. Rodriguez-Perez, J.I. Velasco, and J.A. de Saja: J. Appl. Polym. Sci., 2011, vol. 125, pp. 1059–67.

  35. 35.

    B. Ren and J.G. Morris: Metall. Mater, Trans. A, 1995, vol. 26A, pp. 31-40.

    Article  CAS  Google Scholar 

  36. 36.

    H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, Springer, Berlin, 2004.

  37. 37.

    J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2863-82.

    Article  CAS  Google Scholar 

  38. 38.

    J. Liu and J.G. Morris: Mater. Sci. Eng. A, 2003, vol. 357, pp. 277-96.

    Article  Google Scholar 

  39. 39.

    X.Y. Wen, Z.D. Long, W.M. Yin, T. Zhai, Z. Li, and S.K. Das: Mater. Sci. Eng. A, 2007, vols. 454–455, pp. 245–51.

Download references


Financial assistance from the MCINN and Feder Program (MAT2009-14001-C02-01 and MAT 2012-34901), the Junta of Castille and Leon (VA174A12-2) and the European Space Agency (Project MAP AO-99-075) is gratefully acknowledged. In addition, the authors are grateful to the Spanish Ministry of Economy and Competitiveness, which supported this investigation with a FPU-doctoral grant Ref-AP-2007-03318 (J. Lázaro) and a Juan de la Cierva contract of E. Solórzano (JCI-2011-09775). Financial support for PIRTU contract of E. Laguna-Gutierrez by Junta of Castile and Leon (EDU/289/2011) and co-funded by the European Social Fund is also acknowledged. The authors would also like to thank the Alulight Company for providing some of the precursor materials used in this study.

Author information



Corresponding author

Correspondence to Eusebio Solórzano.

Additional information

Manuscript submitted September 11, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lázaro, J., Laguna-Gutiérrez, E., Solórzano, E. et al. Effect of Microstructural Anisotropy of PM Precursors on the Characteristic Expansion of Aluminum Foams. Metall and Materi Trans B 44, 984–991 (2013). https://doi.org/10.1007/s11663-013-9852-6

Download citation


  • Foam
  • Aluminum Foam
  • Compaction Pressure
  • Expansion Behavior
  • Semisolid State