Skip to main content
Log in

Influence of Isothermal Treatment on MnS and Hot Ductility in Low Carbon, Low Mn Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Hot ductility tests were used to determine the hot-cracking susceptibility of two low-carbon, low Mn/S ratio steels and compared with a higher-carbon plain C-Mn steel and a low C, high Mn/S ratio steel. Specimens were solution treated at 1623 K (1350 °C) or in situ melted before cooling at 100 K/min to various testing temperatures and strained at 7.5 × 10−4 s−1, using a Gleeble 3500 Thermomechanical Simulator. The low C, low Mn/S steels showed embrittlement from 1073 K to 1323 K (800 °C to 1050 °C) because of precipitation of MnS at the austenite grain boundaries combined with large grain size. Isothermal holding for 10 minutes at 1273 K (1000 °C) coarsened the MnS leading to significant improvement in hot ductility. The higher-carbon plain C-Mn steel only displayed a narrow trough less than the Ae3 temperature because of intergranular failure occurring along thin films of ferrite at prior austenite boundaries. The low C, high Mn/S steel had improved ductility for solution treatment conditions over that of in situ melt conditions because of the grain-refining influence of Ti. The higher Mn/S ratio steel yielded significantly better ductility than the low Mn/S ratio steels. The low hot ductility of the two low Mn/S grades was in disagreement with commercial findings where no cracking susceptibility has been reported. This discrepancy was due to the oversimplification of the thermal history of the hot ductility testing in comparison with commercial production leading to a marked difference in precipitation behavior, whereas laboratory conditions promoted fine sulfide precipitation along the austenite grain boundaries and hence, low ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Gladman: The Physical Metallurgical of Microalloyed Steels, The Institute of Materials, London, 1997, p. 312.

    Google Scholar 

  2. A. Cowley and B. Mintz: Mater. Sci. Technol., 2004, vol. 20, pp. 1431–1439.

    Article  Google Scholar 

  3. B. Mintz and Z. Mohamed: Mater. Sci. Technol., 1989, vol. 5, no. 12, pp. 1212–1219.

    Article  Google Scholar 

  4. B. Mintz, S. Yue, and J.J. Jonas: Int. Mater. Rev., 1991, vol. 36, no. 5, pp. 187–217.

    Article  Google Scholar 

  5. B. Mintz and R. Abushosha: Mater. Sci. Technol., 1992, vol. 8, no. 2, pp. 171–177.

    Article  Google Scholar 

  6. R. Abushosha, S. Ayyad, and B. Mintz: Mater. Sci. Technol., 1998, vol. 14, no.3, pp. 227–235.

    Article  Google Scholar 

  7. B. Mintz: ISIJ Int., 1999, vol. 39, no. 3, pp. 833–855.

    Article  Google Scholar 

  8. B. Mintz and J. R. Banerjee: Mater. Sci. Technol 2010, vol. 26 (5), pp. 547–551.

  9. H. Kabayashi: ISIJ Int., 1991, vol. 31, no. 3, pp. 268–277.

    Article  Google Scholar 

  10. M. Suzuki, C.H. Yu, H. Shibata, and T. Emi: ISIJ Int., 1997, vol. 37, no. 9, pp. 862–871.

    Article  Google Scholar 

  11. K. Yasumoto, Y. Maehara, S. Ura, and Y. Ohmori: Mater. Sci. Technol., 1985, vol. 1, no. 2, pp. 111–116.

    Article  Google Scholar 

  12. B. Mintz, R. Abushosha, O.G. Comineli, and M.A. Loyola de Oliveira: THERMEC’ 97: International Conference on Thermomechanical Processing of Steels & Other Materials, Wollongong, 1997, pp. 867–73.

  13. Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, and Y. Ohmori: Mater. Sci. Technol., 1990, vol. 6, no. 9, pp. 793–806.

    Article  Google Scholar 

  14. K. M. Banks, A. Tuling, and B. Mintz: Mater. Sci. Technol., 2012, vol. 28, no. 5 pp. 536–542.

    Article  Google Scholar 

  15. B. Mintz, J.M. Stewart, and D.N. Crowther: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 959–964.

    Article  Google Scholar 

  16. A.M. El-wazri, F. Hassani, S. Yue, and E. Es-sadiqi: Iron Steelmak, 1998, vol. 1, pp. 37–41.

    Google Scholar 

  17. A.M. El-wazri, F. Hassani, S. Yue, E. Es-sadiqi, L.E. Collins, and K. Iqbal: ISIJ Int., 1999, vol. 39, no. 3, pp. 253–262.

    Article  Google Scholar 

  18. S. Akhlaghi, F. Hassani, and S. Yue: 40th MWSP Conf. Proc., pp. 699–705, Pittsburgh, PA, ISS., Oct 25–28, 1998.

  19. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203 pp. 721–729.

    Google Scholar 

  20. C. Chimani, G.X. Shan, K. Morwald, O. Kolendnik, H.J. Bohm, D. Duschlbauer, and T. Drabek: AISTech 2006 Proceedings, vol 1, pp. 825–830, AIST, Warrendale, PA, May 1–5, 2006.

  21. Y. Maehara and T. Nagamichi: Mater. Sci. Technol., 1991, vol. 7, no. 10, pp. 915–921.

    Article  Google Scholar 

  22. K. Carpenter: Ph.D. Thesis, Faculty of Engineering, University of Wollongong, NSW, 1994.

  23. A. Mannucci, E. Anelli, M. Armengol, and M. Vedani: MSF, 2010, vol. 638–642, pp. 3362–3367.

    Article  Google Scholar 

  24. Y. Gao and K. Sorimachi: ISIJ Int., 1995, vol. 35, no. 7, pp. 914–919.

    Article  Google Scholar 

  25. E.T. Turkdogan, S. Ignatowicz, and J. Pearson: J. Iron Steel Inst., 1955, vol. 180, p. 349.

    Google Scholar 

  26. X. Tsekouras: Private Communication, BlueScope Steel, Five Islands Road, Port Kembla, NSW, 2010.

Download references

Acknowledgments

The current study was conducted at the University of Wollongong under a funding support from BlueScope Steel, Australia. The authors wish to thank Mr. Les Moore for conducting the EPMA analysis and assisting with interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin R. Carpenter.

Additional information

Manuscript submitted January 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, K.R., Killmore, C.R. & Dippenaar, R. Influence of Isothermal Treatment on MnS and Hot Ductility in Low Carbon, Low Mn Steels. Metall Mater Trans B 45, 372–380 (2014). https://doi.org/10.1007/s11663-013-9851-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9851-7

Keywords

Navigation