Skip to main content

Advertisement

Log in

Thermogravimetric Analysis and Kinetics on Reducing Low-Grade Manganese Dioxide Ore by Biomass

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nonisothermal thermogravimetric analysis (TGA) was applied to evaluate rice straw, sawdust, wheat stalk, maize straw, and bamboo to explore their potential for reduction of manganese dioxide ore. Results from the biomass pyrolysis experiments showed that wood-based biomass materials, such as sawdust and bamboo, could produce more reductive agents, while herb-based biomass materials, such as rice straw, wheat stalk, and maize straw, had lower reaction temperatures. The peak temperatures for biomass reduction tests were 20 K to 50 K (20 °C to 50 °C) higher compared with the pyrolysis tests, and a clear shoulder at around 523 K (250 °C) could be observed. The effects of heating rate, biomass/manganese dioxide ore ratio, and different components of biomass were also investigated. An independent parallel first-order reaction kinetic model was used to calculate the values of activation energy and frequency factor for biomass pyrolysis and reduction of manganese dioxide ore. For better understanding the reduction process, kinetic parameters of independent behavior of manganese dioxide ore were also calculated by simple mathematical treatment. Finally, the isokinetic temperature T i and the rate constant k 0 for reduction of manganese oxide ore by reductive volatiles of biomass were derived according to the Arrhenius equation, which were determined to be 603 K (330 °C) and 108.99 min−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. J. Yang, and Z.M. Zeng: Chin. Manganese Industry, 2011, vol. 29 (2), pp. 6-9.

    Google Scholar 

  2. N. Duan, Z.G. Dan, and D.N. Song: Journal of Environmental Engineering Technology, 2011, vol. 1 (1), pp. 75-81.

    Google Scholar 

  3. T.J. Liu, Z.J. Tan, and S.Q. Liao: Chin. Mang. Indus., 2006, vol. 24(1), pp. 9–12.

  4. Z.P. Tian: Chin. Mang. Indus., 2010, vol. 28(2), pp. 26–29.

  5. S.K. Hong: Chin. Manganese Industry, 2011, vol. 29 (3), pp. 13-16.

    Google Scholar 

  6. G. Senanayake: Hydrometallurgy, 2004, vol. 73(3–4), pp. 215–224.

  7. T.A. Lasheen, M.N. El Hazek, and A.S. Helal: Hydrometallurgy, 2009, vol. 98(3–4), pp. 314–17.

  8. M.S. Bafghi, A. Zakeri, Z. Ghasemi, and M. Adeli: Hydrometallurgy, 2008, vol. 90(3–4), pp. 207–212.

  9. M. Trifoni, L. Toro, and F. Vegliò: Hydrometallurgy, 2001, vol. 59(1), pp. 1–14.

  10. S. Acharya: Metall. Trans. B, 1991, vol. 22B, pp. 259–261.

  11. I.D. Michelis, F. Ferella, F. Beolchini, and F. Vegliò: Waste. Manag., 2009, vol. 29(1), pp. 128–135.

  12. K.S. Abdel Halim, M. Bahgat, M.B. Morsi, and K. El-Barawy: Ironmak. Steelmak., 2011, vol. 38 (4), pp. 279–284.

  13. A.A. Ismail, E.A. Ali, I.A. Ibrahim, and M.S. Ahmed: Can. J. Chem. Eng., 2004, vol. 82(6), pp. 1296–1300.

  14. Z. Cheng, G.C. Zhu, and Y.N. Zhao: Hydrometallurgy, 2009, vol. 96(1–2), pp. 176–179.

  15. J.J. Song, G.C. Zhu, P. Zhang, and Y.N. Zhao: Acta. Metall. Sin. (Engl. Lett.), 2010, vol. 23(3), pp. 223–29.

  16. J.M. Cai and S. Alimujiang: Ind. Eng. Chem. Res., 2009. 48(2), pp. 619–24.

  17. K.S. Kim, J.H. Yang, K.W. Kang, and K.W. Song: J. Nucl. Mater., 2004, vol. 325(2–3), pp. 129–133.

  18. D. Vamvuka, E. Kakaras, E. Kastanaki, and P. Grammelis: Fuel, 2003, vol. 82(15–17), pp. 1949–60.

  19. Y.N. Zhao, G.C. Zhu, and Z. Cheng: Hydrometallurgy, 2010, vol. 105(1–2), pp. 96–102.

  20. G.J. Lv, S.B. Wu, and R. Lou: Bioreources, 2010, vol. 5(2), pp. 1281–91.

  21. G.J. Lv, and S.B. Wu: J. Anal. Appl. Pyrol., 2012, vol. 97, pp. 11-18.

    Article  CAS  Google Scholar 

  22. M.S. Jahana and S.P. Mun: Bangladesh J. Sci. Ind. Res., 2009, vol. 44(3), pp. 271–80.

  23. M. Muller-Hagedorn, H. Bockhorn, L. Krebs, and U. Muller: J. Anal. Appl. Pyrolysis, 2003, vol. 68-69, pp. 231-249.

    Article  Google Scholar 

  24. S. Munir, S.S. Daood, W. Nimmo, A.M. Cunliffe, and B.M. Gibbs: Bioreource. Technol., 2009, vol. 100(3), pp. 1413–18.

  25. G. Skodras, P. Grammelis, P. Basinas, E. Kakaras, and G. Sakellaropoulos: Ind. Eng. Chem. Res., 2006, vol. 45(11), pp. 3791–99.

  26. A. Skreiberg, O. Skreiberg, J. Sandquist, and L. Sorum: Fuel, 2011, vol. 90(6), pp. 2182–97.

  27. A.W. Coats and J.P. Redfern: Nature, 1964, vol. 201(4914), pp. 68–69.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocai Zhu.

Additional information

Manuscript submitted October 19, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhu, G., Yan, H. et al. Thermogravimetric Analysis and Kinetics on Reducing Low-Grade Manganese Dioxide Ore by Biomass. Metall Mater Trans B 44, 878–888 (2013). https://doi.org/10.1007/s11663-013-9840-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9840-x

Keywords

Navigation