Skip to main content

Advertisement

Log in

The Mechanism on Biomass Reduction of Low-Grade Manganese Dioxide Ore

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

The mechanism on biomass reduction of low-grade manganese dioxide ore was studied by investigating influence factors on manganese recovery degree, such as the reaction temperature, time, biomass/ore ratio, compositions of biomass, nitrogen flow rate, and particle size of raw materials, and it was further identified through analysis of gas composition in the outlet gas, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) for the reduced sample. The results show that the reduction process involved mainly two steps: (1) The biomass was first pyrolyzed to release reductive volatiles and (2) manganese oxide ore was reacted with the reductive volatiles. By an analysis of gas composition in the outlet gas, it was also found that the ratio of biomass/ore had an important effect on the reduction mechanism. With a low biomass/ore ratio of 0.5:10, the reducing reaction of the reductive volatiles with manganese dioxide ore proceeded mainly in two stages: (1) The condensable volatiles (tar) released from biomass pyrolysis reacted with manganese oxide ore to produce reductive noncondensable gases such as hydrogen, carbon monoxide, and some light hydrocarbons; and (2) the small molecule gases further participated in the reduction. XRD pattern analysis on the reduced manganese dioxide ore revealed that the process of biomass reduction of manganese ore underwent in phases (MnO2 → Mn3O4 → MnO). The kinetics study showed the reduction process was controlled by a gas–solid reaction between biomass volatiles and manganese oxide ore with activation energy E of 53.64 kJ mol−1 and frequency factor A of 5.45 × 103 minutes−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.N. Sahoo, P.K. Naik, and S.C. Das: Hydrometallurgy, 2001, vol. 62, no. 3, pp. 157-63.

    Article  CAS  Google Scholar 

  2. M.N. Hazek, T.A. El Lasheen, and A.S. Helal: Hydrometallurgy, 2006, vol. 84, nos. 3–4, pp. 187-91.

    Article  Google Scholar 

  3. J. Yang and Z.M. Zeng: China’s Manganese Ind., 2011, vol. 29 (2), pp. 6–9.

  4. T.J. Liu, Z.J. Tan, and S.Q. Liao: China’s Manganese Ind., 2006, vol. 24, no. 1, pp. 9-12.

    Google Scholar 

  5. Z.P. Tian: China’s Manganese Ind., 2010, vol. 28, no. 2, pp. 26-9.

    Google Scholar 

  6. C. Abbruzzese: Hydrometallurgy, 1990, vol. 25, no. 1, pp. 85-97.

    Article  CAS  Google Scholar 

  7. H.L. Gao: China Metal Bulletin, 2006, vol. 7, pp. 33-6.

    Google Scholar 

  8. A.A. Ismail, E.A. Ali, I.A. Ibrahim, and M.S. Ahmed: Can. J. Chem. Eng., 2004, vol. 82, no. 6, pp. 1296-300.

    Article  CAS  Google Scholar 

  9. R. Kononov, O. Ostrovski, and S. Ganguly: ISIJ Int., 2009, vol. 49, no. 8, pp. 1115-22.

    Article  CAS  Google Scholar 

  10. K.S.A. Halim, M. Bahgat, M.B. Morsi, and K. El-Barawy: Ironmaking Steelmaking, 2011, vol. 38, no. 4, pp. 279-84.

    Article  Google Scholar 

  11. Z. Cheng, G.C. Zhu, and Y.N. Zhao: Hydrometallurgy, 2009, vol. 96, nos. 1–2, pp. 176-9.

    Article  CAS  Google Scholar 

  12. J.J. Song, G.C. Zhu, P. Zhang, and Y.N. Zhao: Acta. Metall. Sin. (Engl. Lett.), 2010, vol. 23, no. 3, pp. 223-9.

    CAS  Google Scholar 

  13. D. Hariprasad, B. Dash, M.K. Ghosh, and S. Anand: Miner. Eng., 2007, vol. 20, no. 14, pp. 1293-5.

    Article  CAS  Google Scholar 

  14. Y.N. Zhao, G.C. Zhu, and Z. Cheng: Hydrometallurgy, 2010, vol. 105, nos. 1–2, pp. 96-102.

    Article  CAS  Google Scholar 

  15. A. Skreiberg, O. Skreiberg, J. Sandquist, and L. Sorum: Fuel, 2011, vol. 90, no. 6, pp. 2182-97.

    Article  CAS  Google Scholar 

  16. G. Skodras, P. Grammelis, P. Basinas, E. Kakaras, and G. Sakellaropoulos: Ind. Eng. Chem. Res., 2006, vol. 45, no. 11, pp. 3791-9.

    Article  CAS  Google Scholar 

  17. L.I. Darvell, J.M. Jones, B. Gudka, X.C. Baxter, A. Saddawi, A. Williams, and A. Malmgren: Fuel, 2010, vol. 89, no. 10, pp. 2881-90.

    Article  CAS  Google Scholar 

  18. K. Matsuo, M. Nitta, and K. Aomura: J. Jpn. Petrol. Inst., 1979. vol. 22, no. 6, pp. 384-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guocai Zhu.

Additional information

Manuscript submitted November 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhu, G., Yan, H. et al. The Mechanism on Biomass Reduction of Low-Grade Manganese Dioxide Ore. Metall Mater Trans B 44, 889–896 (2013). https://doi.org/10.1007/s11663-013-9835-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9835-7

Keywords

Navigation