Advertisement

Metallurgical and Materials Transactions B

, Volume 44, Issue 4, pp 1041–1048 | Cite as

Modeling of Grain Structure and Heat-Affected Zone in Laser Surface Melting Process

  • Mohammad Amin Jabbareh
  • Hamid AssadiEmail author
Article

Abstract

A combination of phase-field and cellular automata methods is used to study the effect of initial grain size and laser power density on heat-affected zone (HAZ) formation during laser surface melting. Also, an analytical model is developed to estimate the depth of HAZ as a function of initial grain size and process parameters. Both analytical and numerical results indicate that the size of HAZ, as measured with respect to the changes in the grain structure, is inversely proportional to the initial grain size. They also show how increasing the laser power leads to an increase in the extent of HAZ. The proposed models thus provide a basis for the prediction and control of HAZ in laser surface melting.

Keywords

Welding Welding Speed Electron Beam Welding Laser Power Density Laser Surface Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Symbol

Description

a

absorption coefficient

c

thermal capacity

d

mean grain diameter

d0

initial grain diameter

Ei

a dimensionless function

F

free energy function

f

local volumetric free energy density

g

crystallographic mismatch free energy

GL

Gibbs free energy of the liquid

GS

Gibbs free energy of the solid

H

heat input

HL

latent heat of fusion

Htr

enthalpy parameter in phase field model

EDk

driving force multiplier

k0

kinetic constant

L

width of heat source

Mϕ

Solid/liquid interface mobility

n

grain growth exponent

P

laser power density

p0

kinetic multiplier

Q

activation energy of the orientational ordering

q

grain boundary movement activation energy

T

temperature

t

time

T0

initial temperature

Tm

melting temperature

W

height of the energy barrier between two phases

α

thermal diffusivity

ϕ

phase field parameter

θ

orientation of the given cell

ρ

density

ε

solid/liquid interface thickness

ε0

grain boundary thickness

τ

laser duration

Notes

Acknowledgments

The authors are thankful to Dr. Iraj Hadi for his assistance with the experiments.

References

  1. 1.
    B.S. Yilbas, C. Karatas, I. Uslan, O. Keles, Y. Usta, Z. Yilbas, M. Ahsan, and D. Ward: Optic Laser Eng., 2008, vol. 46, pp. 777-84.CrossRefGoogle Scholar
  2. 2.
    A. Sharma and V. Yadava: Optic Laser Tech., 2012, vol. 44, pp. 159-68.CrossRefGoogle Scholar
  3. 3.
    Y.S. Yang and S.H. Lee: J. Mater. Process. Tech., 1999, vol. 94, pp. 151-56.CrossRefGoogle Scholar
  4. 4.
    T. Sakagawa, S. Nakashiba, and H. Hiejima: Physics Procedia, 2011, vol. 12, pp. 6-10.CrossRefGoogle Scholar
  5. 5.
    H.W. Bergmann, K. Schutte, E. Schubert, and A. Emmel: Appl. Surf. Sci., 1995, vol. 86, pp. 259-65.CrossRefGoogle Scholar
  6. 6.
    M. Li, M. Chao, E. Liang, J. Yu, J. Zhang, and D. Li: Appl. Surf. Sci., 2011, vol. 258, pp. 1599-1604.CrossRefGoogle Scholar
  7. 7.
    K. Esterling: Introduction to the Physical Metallurgy of Welding, Butterworths & Co. Ltd., Sevenoaks, U.K., 1983.Google Scholar
  8. 8.
    S. Kou: Welding Metallurgy, 2nd ed., Wiley, Hoboken, NJ, 2003.Google Scholar
  9. 9.
    V. Gunaraj and N. Murugan: J. Mater. Process. Tech., 1999, vol. 95, pp. 246-61.CrossRefGoogle Scholar
  10. 10.
    S. Sista, Z. Yang, and T. DebRoy: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 529-36.CrossRefGoogle Scholar
  11. 11.
    Z. Yang, S. Sista, J.W. Elmer, and T. DebRoy: Acta Metall., 2000, vol. 48, pp. 4813-25.Google Scholar
  12. 12.
    M. Shome: Mater. Sci. Eng. A, 2007, vol. 446, pp. 454-60.Google Scholar
  13. 13.
    J. Moon, J. Lee, and C. Lee: Mater. Sci. Eng. A, 2007, vol. 459, pp. 40-46.CrossRefGoogle Scholar
  14. 14.
    H.J. Aval, S. Serajzade, and A.H. Kokabi: J. Mater. Eng. Perform., 2009, vol. 18, pp. 1193-1200.CrossRefGoogle Scholar
  15. 15.
    K.Y. Benyounis, A.G. Olabi, and M.S.J. Hashmi: J. Mater. Process. Tech., 2005, vol. 165, pp. 978-85.CrossRefGoogle Scholar
  16. 16.
    F. Kong, S. Santhanakrishnan, D. Lin, and R. Kovacevic: J. Mater. Process. Tech., 2009, vol. 209, pp. 5996-6003.CrossRefGoogle Scholar
  17. 17.
    J. Yang, S. Sun, M. Brandt, and W. Yan: J. Mater. Process. Tech., 2010, vol. 210, pp. 2215-22.CrossRefGoogle Scholar
  18. 18.
    L. Fang, Y. Jian-hua, H. Xia-xia, and C. Gua-zhong: J. Iron Steel Res., Int., 2011, vol. 18, pp. 73–78.Google Scholar
  19. 19.
    P. Lacki and K. Adamus: Comput. Struct., 2011, vol. 89, pp. 977-85.CrossRefGoogle Scholar
  20. 20.
    R.G. Thiessen, I.M. Richardson, and J. Sietsma: Mater. Sci. Eng. A, 2006, vol. 427, pp. 223-31.CrossRefGoogle Scholar
  21. 21.
    R.G. Thiessen and I.M. Richardson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 655-63.Google Scholar
  22. 22.
    H. Ikawa, S. Shin, and H. Oshige: Trans. Jpn Weld. Soc., 1975, vol. 6, pp. 17-22.Google Scholar
  23. 23.
    D.M. Herlach: Solidification and Crystallization, Wiley-VCH, Weinheim, Germany, 2004, pp. 17-26.CrossRefGoogle Scholar
  24. 24.
    H. Assadi, M. Oghabi, and D.M. Herlach: Acta Mater., 2009, vol. 57, pp. 1639-47.CrossRefGoogle Scholar
  25. 25.
    W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 63-94.CrossRefGoogle Scholar
  26. 26.
    M.J. Moran, H.N. Shapiro, B.R. Munson, and D.P. Dewitt: Introduction to Thermal Systems Engineering: Thermodynamics, Fluid Mechanics and Heat Transfer, Wiley, New York, NY, 2003, p. 514.Google Scholar
  27. 27.
    P.D. Desai: Int. J. Therm., 1987, vol. 8, pp. 763-80.CrossRefGoogle Scholar
  28. 28.
    H.V. Atkinson: Acta Metall., 1988, vol. 36, pp. 469-91.CrossRefGoogle Scholar
  29. 29.
    M. Shome, O.P. Gupta, and O.N. Mohanty: Scripta Mater., 2004, vol. 50, pp. 1007-10.CrossRefGoogle Scholar
  30. 30.
    H. Hu and B.B. Rath: Metall. Trans., 1970, vol. 1, pp. 3181-84.Google Scholar
  31. 31.
    J.P. Nielsen: Recrystallization, Grain Growth and Textures, ASM, Materials Park, OH, 1966, pp. 286-94.Google Scholar
  32. 32.
    E. Boeker: Environmental Physics, Wiley, London, U.K., 1995, p. 193.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Materials EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations