Skip to main content
Log in

Preparation of Aluminum Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A novel method is adapted to prepare an in situ ceramic composite from waste colliery shale (CS) material. Heat treatment of the shale material, in a plasma reactor and/or in a high temperature furnace at 1673 K (1400 °C) under high vacuum (10−6 Torr), has enabled in situ conversion of SiO2 to SiC in the vicinity of carbon and Al2O3 present in the shale material. The composite has the chemical constituents, SiC-Al2O3-C, as established by XRD/EDX analysis. Particle sizes of the composite range between 50 nm and 200 μm. The shape of the particles vary, presumably rod to spherical shape, distributed preferably in the region of grain boundaries. The CS composite so produced is added to aluminum melt to produce Al-CS composite (12 vol. pct). For comparison of properties, the aluminum metal matrix composite (AMCs) is made with Al2O3 particulates (15 vol. pct) with size <200 μm. The heat-treated Al-CS composite has shown better mechanical properties compared to the Al-Al2O3 composite. The ductility and toughness of the Al-CS composite are greater than that of the Al-Al2O3 composite. Fractographs revealed fine sheared dimples in the Al-CS composite, whereas the same of the Al-Al2O3 composite showed an appearance of cleavage-type facets. Abrasion and frictional behavior of both the composites have been compared. The findings lead to the conclusion that the in situ composite developed from the colliery shale waste material has a good future for its use in AMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.B. Miracle: Compo. Sci. Tech., 2005, vol. 65, pp. 2526-40.

    Article  CAS  Google Scholar 

  2. C. Lane and M. Lenox: Proc. of the 2nd Inter. Conf. on Cast Metal Matrix Composites, Tuscaloosa, 1993, pp. 253–62.

  3. W.H. Hunt and D.B Miracle: ASM Handbook, 2001, vol. 21, pp. 1029–32.

  4. D. Lloyd: Int. Mater. Rev., 1999, vol.39, pp. 1-23.

    Article  Google Scholar 

  5. D.R. Herling, G. Grant, and W. Hunt: Adv. Mater. Process, 2001, vol.159, pp. 37-43.

    CAS  Google Scholar 

  6. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, pp. 175-78.

    Article  CAS  Google Scholar 

  7. N. Shi and R. J. Arsenault: J. of comp. Tech. and Res., 1991, vol.13, pp. 211-26.

    Article  CAS  Google Scholar 

  8. N. Shi and R. J. Arsenault: Metall. Trans. A, 1993, vol. 24A, pp. 1879-82.

    CAS  Google Scholar 

  9. M. Kouzeli, L. Weber, C. San Marchi, A. Mortensen: Acta Metall., 2001, vol. 49, pp. 3699-709.

    CAS  Google Scholar 

  10. J.E. Spowart and D.B. Miracle: Mater. Sci. Eng. A, 2003, vol.357, pp. 111-23.

    Article  Google Scholar 

  11. J.J. Lewandowski and C. Liu: Mater. Sci. Eng. A, 1989, vol.107, pp. 241-55.

    Article  Google Scholar 

  12. V.V. Bhanu Prasad, B.V.R. Bhat, Y.P. Mahajan, and P. Ramakrishnan: Mater. Sci. Eng. A, 2002, vol. 337, pp. 179–86.

  13. M. Kouzeli, and D.C. Dunand: Acta Metall., 2003, vol. 51, pp. 6105-21.

    CAS  Google Scholar 

  14. DB. Miracle: Compo. Sci. Tech., 2005, vol. 65, pp. 2526-40.

    Article  CAS  Google Scholar 

  15. M.K. Surappa: Sadhana, 2003, vol. 28, pp. 319-34.

    Article  CAS  Google Scholar 

  16. J.E. Allison and G.S. Cole: JOM, 1993, vol.45, pp. 19-24.

    Article  CAS  Google Scholar 

  17. R.J. Lederich and S.M.L. Sastry: Mater. Sci. Eng., 1982, vol. 55, pp. 143-46.

    Article  Google Scholar 

  18. M. Single, D. Dwivedi, L. Singh, and V. Chawla: J. Min. Mater. Charact. Eng., 2009, vol. 8, pp. 455–67.

  19. P. Poddar, S. Mukherjee, and K.L. Sahoo: J. Mater. Eng. Perform., 2009, vol. 18, pp. 849- 55.

    Article  CAS  Google Scholar 

  20. J. Hashim, L. Looney, and M.S.J. Hashmi: J. Mater. Pro. Tech., 2001, vol. 119, pp. 329-335.

    Article  CAS  Google Scholar 

  21. J. Hashim, L. Looney, and M.S.J. Hashmi: J. Mater. Pro. Tech., 2001, vol. 119, pp. 324-328.

    Article  CAS  Google Scholar 

  22. S.K Singh, B.C Mohanty, and S. Basu: Bull: Mater. Sci., 2002, vol. 25, pp. 561-63.

    Article  CAS  Google Scholar 

  23. S.B. Venkata Siva, K.L. Sahoo, R.I. Ganguly, and R.R. Dash: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1226–31.

  24. L. Ceschini, G. Minak, and A. Morri: Compos. Sci. Technol., 2009, vol. 69, pp. 1783–89.

  25. P. Cavaliere and E. Evangelista: Compos. Sci. Technol., 2006, vol. 66, pp. 357–62.

  26. S. Das, R. Behera, A. Datta, G. Majumdar, B. Oraon, and G. Sutradhar: Mater. Sci. Appli., 2010, vol. 1, pp. 310-16.

    CAS  Google Scholar 

  27. K. H. Im and C. K. H. Dharan: Inter. J. Machine Tools Manuf., 1997, vol. 37, pp. 1281-302.

    Article  Google Scholar 

  28. M. Vedani, F.D’Errico, and E. Gariboldi: Scripta Metall. Mater. 1995, vol. 33, pp. 857–62.

  29. K.L. Sahoo, C.S.S. Krishna, and A.K. Chakrabarti: Wear, 2000, vol. 239, pp. 211-18.

    Article  CAS  Google Scholar 

  30. M. Singla, L. Singh, and V. Chawla: J. Min. Mater. Charat. Eng. 2009, vol. 8, pp. 813–19.

  31. A. Vencl, A. Rac, I. Bobic, and Z. Miskovic: Tribol. Indus. 2006, vol. 28, pp. 27–31.

  32. A. Vencl, A. Rac, and I. Bobic: Tribol. Indus., 2004, vol. 26, pp. 31–38.

  33. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Proceedings on Conference on Micro Alloyed HSLA stu, ASM, Chicago, 1988, p. 259.

  34. M. Roy, B. Venkataraman, V.V. Bhanuprasad, Y.R. Mahajan, and G. Sundararajan: Metall. Trans. A, 1992, vol. 23, pp. 2833-47.

    CAS  Google Scholar 

  35. F.M Hosling, F.F. Poryillo, R. Wunderlin, and R. Mehrabian: J. Mater. Sci., 1982, vol. 17, pp. 477-98.

    Article  Google Scholar 

  36. A. Sato and R. Mehrabian: Metall. Trans. B, 1976, vol. 7, pp. 443-51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the M/S National Aluminium Ltd. Company, Bhubaneswar, India, for providing the aluminum and necessary funds for carrying out the investigation. The authors are, in particular, grateful to the Gandhi Institute of Engineering and Technology for permitting the research in the Laboratory and as well as providing permission for publishing the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Sahoo.

Additional information

Manuscript submitted November 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkata Siva, S.B., Sahoo, K.L., Ganguly, R.I. et al. Preparation of Aluminum Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material. Metall Mater Trans B 44, 800–808 (2013). https://doi.org/10.1007/s11663-013-9832-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9832-x

Keywords

Navigation