Skip to main content
Log in

Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

By means of ANSYS Classic and ANSYS CFX external coupling, a numerical model for free surface dynamics of electrically conductive fluid in an alternate electromagnetic field is developed. Volume of Fluid (VOF) numerical technique and k–ω SST turbulence model are applied for the high Reynolds number two-phase flow calculation. The model is extended on 3D and adjusted for the case of electromagnetic levitation. Results for the steady-state free surface shapes obtained with transient calculations are compared with other models and experimental measurements in induction furnaces, induction furnace with cold crucible, and electromagnetic levitation melting device. Numerical calculation results of free surface dynamics are compared with analytic estimation of free surface oscillation period. Parameter studies by means of developed approach and comparison between 3D simulations of free surface dynamics of electromagnetically induced flow with k–ω SST and large eddy simulation (LES) turbulence models are discussed in the second part of the article to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M. Kirpo: Ph.D. Thesis, University of Latvia, Riga, 2008, p. 184.

  2. Y. Fautrelle, A. Sneyd, and J. Etay: Fluid Mechanics and its Applications, 2007, vol. 80, part IV, pp. 345–55.

  3. F. Negrini, M. Fabbri, M. Zuccarini, E. Takeuchi, and M. Tani: Energy Conversion and Management, 2000, 41, pp. 1687–1701.

    Article  CAS  Google Scholar 

  4. S. S. Roy, A. W. Cramb, J. F. Hoburg: Metallurgical and materials transactions, 1995, Vol. 26B, pp. 1191-1196.

    Article  Google Scholar 

  5. Y.W. Cho, Y.J. Oh, K.W. Yi, S.H. Chung, and J.D. Shim: Modell. Simul. Mater. Sci. Eng., 1996, 4, pp. 11–22.

    Article  Google Scholar 

  6. A. Umbrasko, E. Baake, B. Nacke, and A. Jakovics: Heating by Electromagnetic Sources-07, Padua, June 19–22, 2007, Book of abstracts, pp. 277–84.

  7. E. Westphal: Doktor-Ingenieur Dissertation, Dusseldorf, VDI Reihe 21 Nr. 210, 1996, 138 S.

  8. F. Bernier: Doktor-Ingenieur Dissertation, Dusseldorf, VDI Reihe 19 Nr. 133, 2001, 138 S.

  9. M. Vogt: Doktor-Ingenieur Dissertation, Dusseldorf, VDI Reihe 19 Nr. 132, 2001, 170 S.

  10. M. Kirpo, A. Jakovics, E. Baake, and B. Nacke: Heating by Electromagnetic Sources-07, Padua, June 19–22, 2007, Book of abstracts, pp. 153–60.

  11. S. Spitans, A. Jakovics, E. Baake, and B. Nacke: Magnetohydrodynamics, 2011, 4, pp. 461–73.

    Google Scholar 

  12. O. Pesteanu and E. Baake: ISIJ Int., 2011, 51(5), pp. 707–13.

    Article  CAS  Google Scholar 

  13. O. Pesteanu, E. Baake: ISIJ International, 2011, Vol.51, N5, pp. 714-721.

    Article  CAS  Google Scholar 

  14. V. Bojarevics, A. Roy, and K.A. Pericleous: Magnetohydrodynamics, 2010, 46(4), pp. 339–51.

    Google Scholar 

  15. K. Pericleous, V. Bojarevics, G. Djambazov, R.A. Harding, and M. Wickins: Appl. Math. Modell., 2006, 30(11), pp. 1262–80.

    Article  Google Scholar 

  16. V. Bojarevics, R.A. Harding, K. Pericleous, and M. Wickins: Metall. Mater. Trans. B, 2004, 35B, pp. 785–803.

    Article  CAS  Google Scholar 

  17. V. Bojarevics, A. Roy, and K. Pericleous: International Symposium on Heating by Electromagnetic Sources, Padua, May 18–21, 2010. Book of abstracts, pp. 11–18.

  18. S. Easter, V. Bojarevics, and K. Pericleous: J. Phys.: Conf. Ser., 2011, vol. 327, p. 012027.

  19. E. Baake: Doktor-Ingenieur Dissertation, Dusseldorf, 1994, 167 S.

  20. F. Hegewaldt, L. Buligins, and A. Jakowitsch: Elektrowärme International, 1993, 1, pp. 28–42.

    Google Scholar 

  21. H. K. Versteeg, W. Malalasekera. Computational fluid dynamics, second edition, pp. 40-115, Pearson Education Limited, Glasgow, 2007.

    Google Scholar 

Download references

Acknowledgments

The current research was performed with financial support of the ESF project of the University of Latvia, contract No. 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008 and 2009/0162/1DP/1.1.2.1.1/09/IPIA/VIAA/004. The authors wish to thank the German Research Association (DFG) for supporting this study under the Grant No. BA 3565/3-1. The authors would like to acknowledge the contribution and support provided for this research by the great scientist prof. Ovidiu Pesteanu (*1945-†2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergejs Spitans.

Additional information

Manuscript submitted December 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitans, S., Jakovics, A., Baake, E. et al. Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model. Metall Mater Trans B 44, 593–605 (2013). https://doi.org/10.1007/s11663-013-9809-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9809-9

Keywords

Navigation