Metallurgical and Materials Transactions B

, Volume 44, Issue 3, pp 671–690 | Cite as

Characterization of Ceramic Foam Filters Used for Liquid Metal Filtration

  • Mark William Kennedy
  • Kexu Zhang
  • Robert Fritzsch
  • Shahid Akhtar
  • Jon Arne Bakken
  • Ragnhild E. Aune


In the current study, the morphology including tortuosity, and the permeability of 50-mm thick commercially available 30, 40, 50, and 80 pores per inch (PPI) alumina ceramic foam filters (CFFs) have been investigated. Measurements have been taken of cell (pore), window, and strut sizes, porosity, tortuosity, and liquid permeability. Water velocities from ~0.015 to 0.77 m/s have been used to derive both first-order (Darcy) and second-order (Non-Darcy) terms for being used with the Forchheimer equation. Measurements were made using 49-mm “straight through” and 101-mm diameter “expanding flow field” designs. Results from the two designs are compared with calculations made using COMSOL 4.2a® 2D axial symmetric finite element modeling (FEM), as a function of velocity and filter PPI. Permeability results are correlated using directly measurable parameters and compared with the previously published results. Development of improved wall sealing (49 mm) and elimination of wall effects (101 mm) have led to a high level of agreement between experimental, analytic, and FEM methods (±0 to 7 pct on predicted pressure drop) for both types of experiments. Tortuosity has been determined by two inductive methods, one using cold-solidified samples at 60 kHz and the other using liquid metal at 50 Hz, giving comparable results.


Pressure Drop Computational Fluid Dynamic Computational Fluid Dynamic Model Filter Element Ergun Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The current study was carried out as part of the RIRA (Remelting and Inclusion Refining of Aluminium) project funded by the Norwegian Research Council (NRC)—BIP Project No. 179947/I40. The industrial partners involved in the project are Hydro Aluminium AS, SAPA Heat Transfer AB, Alcoa Norway ANS, Norwegian University of Science and Technology (NTNU), and SINTEF Materials and Chemistry. The funds granted by the industrial partners and the NRC are gratefully acknowledged.

The authors wish to express their gratitude to Egil Torsetnes at NTNU for helping with the design and construction of the experimental apparatus. Sincere gratitude is also due to Kurt Sandaunet at SINTEF for his support and help, as well as for the use of the SINTEF laboratory.


  1. 1.
    M. J. Pryor: US Patent 3,893,917, 1975.Google Scholar
  2. 2.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Metall. Mater. Trans. B, in press.Google Scholar
  3. 3.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Light Metals, San Diego, CA, 27 February to 3 March, 2011, pp. 763–68.Google Scholar
  4. 4.
    Sivex® Application Guidelines, Jan-10-E4-565.Google Scholar
  5. 5.
    B. Hübschen, J. Krüger, J. Keegan, and W. Schneider, Light Metals, 2000, pp. 809–15.Google Scholar
  6. 6.
    P. Forchheimer, Z. Ver. Deutsch. Ing, vol. 45, 1901, pp. 1782-88.Google Scholar
  7. 7.
    S. Ergun, Chem. Eng. Prog., vol. 48, 1952, pp. 89-94.Google Scholar
  8. 8.
    I. Macdonald, M. El-Sayed, K. Mow, and F. Dullien, Ind. Eng. Chem. Fundam., vol. 18, 1979, pp. 199-208.CrossRefGoogle Scholar
  9. 9.
    J. Richardson, Y. Peng, and D. Remue, Appl. Catal. A, vol. 204, 2000, pp. 19-32.CrossRefGoogle Scholar
  10. 10.
    B. Dietrich, W. Schabel, M. Kind, and H. Martin, Chem. Eng. Sci., vol. 64, 2009, pp. 3633-40.CrossRefGoogle Scholar
  11. 11.
    B. Dietrich, Chem. Eng. Sci., vol. 74, 2012, pp. 192-99.CrossRefGoogle Scholar
  12. 12.
    S.A. Shakiba, R. Ebrahimi, and M. Shams: J. Fluids Eng., vol. 133, 2011, pp. 111105-1–10.Google Scholar
  13. 13.
    M.W. Kennedy, R. Fritzsch, S. Akhtar, J.A. Bakken, and R.E. Aune: U.S. Provisional Patent Application 61/639,196, 2012.Google Scholar
  14. 14.
    J. Große, B. Dietrich, H. Martin, M. Kind, J. Vicente, and E.H. Hardy, Chem. Eng. Technol., 31, 2008, pp. 307-314.CrossRefGoogle Scholar
  15. 15.
    B. Dietrich, G.I. Garrido, P. Habisreuther, N. Zarzalis, H. Martin, M. Kind, and B. Kraushaar-Czarnetzki, Ind. Eng. Chem. Res., vol. 48, 2009, pp. 10395-10401.CrossRefGoogle Scholar
  16. 16.
    Copper Wire Tables Circular No. 31: US Bureau of Standards, 1913, pp. 1–76.Google Scholar
  17. 17.
    R. Fritzsch, M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune, Electromagnetic Processing of Materials, 23–25 October, Beijing, China, 2012, pp. 1–4.Google Scholar
  18. 18.
    P. Desai, H. James, and C. Ho, J. Phys. Chem. Ref. Data, vol. 13, 1984, pp. 1131-1172.CrossRefGoogle Scholar
  19. 19.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune, COMSOL Users Conference, 26–28 October, Stuttgart, Germany, 2011, pp. 1–9.Google Scholar
  20. 20.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune, Light Metals, Orlando, Florida, 3–7 March, 2012, pp. 269–75.Google Scholar
  21. 21.
    L.F. Moody, Trans. ASME, vol. 66, 1944, pp. 671-684.Google Scholar
  22. 22.
    W. Zhi-qing, Appl. Math. Mecha., vol. 3, 1982, pp. 433-446.CrossRefGoogle Scholar
  23. 23.
    F.M. White, Fluid Mechanics, 4th ed., McGraw Hill, Boston, 1999, pp 331–32.Google Scholar
  24. 24.
    N. Keegan, W. Schneider, and H. Krug, Light Metals, 1999, pp. 1031–41.Google Scholar
  25. 25.
    E. Moreira, M. Innocentini, and J. Coury, J. Eur. Ceram. Soc., vol. 24, 2004, pp. 3209-3218.CrossRefGoogle Scholar
  26. 26.
    G. Diedericks and J. Du Plessis, Adv. Water Resour., vol. 19, 1996, pp. 225-239.CrossRefGoogle Scholar
  27. 27.
    S. Ergun and A.A. Orning, Ind. Eng. Chem., vol. 41, 1949, pp. 1179-1184.CrossRefGoogle Scholar
  28. 28.
    T. Lu, H. Stone, and M. Ashby, Acta Mater., vol. 46, 1998, pp. 3619-3635.CrossRefGoogle Scholar
  29. 29.
    M. Lacroix, P. Nguyen, D. Schweich, C. Pham Huu, S. Savin-Poncet, and D. Edouard, Chem. Eng. Sci., vol. 62, 2007, pp. 3259-67.CrossRefGoogle Scholar
  30. 30.
    T.T. Huu, M. Lacroix, C. Pham Huu, D. Schweich, and D. Edouard, Chem. Eng. Sci., vol. 64, 2009, pp. 5131-5142.CrossRefGoogle Scholar
  31. 31.
    M.V. Twigg and J.T. Richardson, Ind. Eng. Chem. Res., vol. 46, 2007, pp. 4166-77.CrossRefGoogle Scholar
  32. 32.
    A. Inayat, J. Schwerdtfeger, H. Freund, C. Körner, R.F. Singer, and W. Schwieger, Chem. Eng. Sci., 2011, vol. 66 (12), pp. 2758–63.Google Scholar
  33. 33.
    M.D.M. Innocentini, L. Lefebvre, R. Meloni, and E. Baril, J. Porous Mater., vol. 17, 2010, pp. 491-99.CrossRefGoogle Scholar
  34. 34.
    M.W. Kennedy, R. Fritzsch, J.A. Bakken, and R.E. Aune: Presented at COMSOL ® User’s Conference, Milan, Italy, 10–12 October, 2012, pp. 1–7.Google Scholar
  35. 35.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune, 3 rd International Symposium on High Temperature Processing, Orlando, Florida, 3–7 March, 2012, pp. 373–82.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Mark William Kennedy
    • 1
    • 2
  • Kexu Zhang
    • 1
    • 3
  • Robert Fritzsch
    • 1
  • Shahid Akhtar
    • 4
  • Jon Arne Bakken
    • 1
  • Ragnhild E. Aune
    • 1
    • 5
  1. 1.Department of Material Science and EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Proval Partners S.A.LausanneSwitzerland
  3. 3.Wartsila Norway A.S.RubbestadnesetNorway
  4. 4.Wire Rod Cast HouseHydro Aluminium, KarmøyHåvikNorway
  5. 5.Department of Material Science and EngineeringRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations