Metallurgical and Materials Transactions B

, Volume 44, Issue 3, pp 691–705 | Cite as

Electromagnetically Modified Filtration of Aluminum Melts—Part I: Electromagnetic Theory and 30 PPI Ceramic Foam Filter Experimental Results

  • Mark William Kennedy
  • Shahid Akhtar
  • Jon Arne Bakken
  • Ragnhild E. Aune
Article

Abstract

In the present work, laboratory-scale continuous filtration tests of liquid A356 aluminum alloy have been performed. The tests were conducted using standard 30 PPI (pores per inch) ceramic foam filters combined with magnetic flux densities (~0.1 and 0.2 T), produced using two different induction coils operated at 50 Hz AC. A reference filtration test was also carried out under gravity conditions, i.e., without an applied magnetic field. The obtained results clearly prove that the magnetic field has a significant affect on the distribution of SiC particles. The influence of the electromagnetic Lorentz forces and induced bulk metal flow on the obtained filtration efficiencies and on the wetting behavior of the filter media by liquid aluminum is discussed. The magnitudes of the Lorentz forces produced by the induction coils are quantified based on analytical and COMSOL 4.2® finite element modeling.

References

  1. 1.
    S. Makarov, R. Ludwig, and D. Apelian, Meas. Sci. Technol., vol. 10, 1999, pp. 1047-53.CrossRefGoogle Scholar
  2. 2.
    Z. Xu, T. Li, and Y. Zhou: Metall. Mater. Trans. A, vol. 38A, 2007, pp. 1104-10.CrossRefGoogle Scholar
  3. 3.
    T. Li, Z. Xu, B. Sun, D. Shu, and Y. Zhou, Acta Metall. Sinica Engl. Lett., vol. 13, 2000, pp. 1068-74.Google Scholar
  4. 4.
    L. Damoah and L. Zhang: Metall. Mater. Trans. B, vol. 41B, 2010, pp. 886-907.CrossRefGoogle Scholar
  5. 5.
    D. Leenov and A. Kolin, J. Chem. Phys., vol. 22, 1954, pp. 683-88.CrossRefGoogle Scholar
  6. 6.
    P. Vilinskas and R. Schiltz, Nucl. Appl., vol. 6, no. 2, (1969), 176-77.Google Scholar
  7. 7.
    C. Conti, J. Meyer, J. Riquet, and P. Netter: Patent Number EP 290360 A(00290360/EP-A), 1988.Google Scholar
  8. 8.
    D. Shu, T. Li, B. Sun, J. Wang, and Y. Zhou: Metall. Mater. Trans. A, vol. 30A, 1999, pp. 2979-88.CrossRefGoogle Scholar
  9. 9.
    K. Takahashi and S. Taniguchi, ISIJ international, vol. 43, 2003, pp. 820-27.CrossRefGoogle Scholar
  10. 10.
    J.P. Park, A. Morihira, K. Sassa, and S. Asai, Tetsu-to-hagané, vol. 80, 1994, pp. 389-94.Google Scholar
  11. 11.
    S. Taniguchi and J. Brimacombe, ISIJ Int, vol. 34, 1994, pp. 722-31.CrossRefGoogle Scholar
  12. 12.
    J. Barglik and C. Sajdak: Elektrowärme Int., (2), 1985, pp. B77–B80.Google Scholar
  13. 13.
    D. Shu, B. Sun, K. Li, J. Wang, and Y. Zhou, ISIJ Int., vol. 42, 2002, pp. 1241-50.CrossRefGoogle Scholar
  14. 14.
    N. El-Kaddah, A. Patel, and T. Natarajan, JOM, vol. 47, 1995, pp. 46-49.CrossRefGoogle Scholar
  15. 15.
    N. El-Kaddah: US Patent 4,909,836, 1990.Google Scholar
  16. 16.
    D. Shu, J. Wang, H. Chen, and B. Sun: US Patent Application 20,080/216,601, 2005.Google Scholar
  17. 17.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Light Metals, San Diego, California, 27 February–3 March, 2011, pp. 763–68.Google Scholar
  18. 18.
    R. Fritzsch, M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Electromagnetic Processing of Materials, Beijing, China, 23–25 October, 2012, pp. 1–4.Google Scholar
  19. 19.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: EPD Congress, San Diego, California, 27 February–3 March, 2011, pp. 707–22.Google Scholar
  20. 20.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: COMSOL Users Conference, Stuttgart, Germany, 26–28 October, 2011, pp. 1–9.Google Scholar
  21. 21.
    M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Light Metals, Orlando, FL, 11–15 March, 2012, pp. 269–75.Google Scholar
  22. 22.
    R. Weaver: http://electronbunker.ca/DL/NumericalExamples01.ods, accessed 15 December 2012.
  23. 23.
    N. McLachlan, Bessel Functions for Engineers, Clarendon Press, Gloucestershire, 1955, pp. 215-230.Google Scholar
  24. 24.
    V. Korovin, Magnetohydrodynamics (Engl. Transl.), vol. 22, 1986, pp. 17-19.Google Scholar
  25. 25.
    V. Korovin, Magnetohydrodynamics (Engl. Transl.), vol. 21, 1986, pp. 321-26.Google Scholar
  26. 26.
    H. Nagaoka, J. Coll. Sci., vol. 27, 1909, pp. 18-33.Google Scholar
  27. 27.
    D. Knight: Part 1: Solenoid Inductance Calculation, October, 2012, http://www.g3ynh.info/zdocs/magnetics/Solenoids.pdf, accessed 15 December 2012.
  28. 28.
    R. Brandt and G. Neuer, Int. J. Thermophys., vol. 28, 2007, pp. 1429-46.CrossRefGoogle Scholar
  29. 29.
    M.W. Kennedy, K. Zhang, R. Fritzsch, S. Akhtar, J.A. Bakken, and R.E. Aune: Metall. Trans. B, 2012 (accepted).Google Scholar
  30. 30.
    A. Çiftja: PhD Thesis, Department of Materials Science and Engineering, NTNU, Trondheim, 2009.Google Scholar
  31. 31.
    P. Forchheimer, Z. Ver. Deutsch. Ing, vol. 45, 1901, pp. 1782-88.Google Scholar
  32. 32.
    S. Ray, B. Milligan, and N. Keegan: Aluminium Cast House Technology 2005, 9th Australasian Conference and Exhibition, Melbourne, Australia, 12–15 September, 2005, pp. 1–12.Google Scholar
  33. 33.
    R. Fritzsch: Masters Thesis, Department of Materials Science and Engineering, NTNU, Trondheim, 2011.Google Scholar
  34. 34.
    H. Duval, C. Rivière, É. Laé, P. Le Brun, and J. Guillot: Metall. Mater. Trans. B, vol. 40B, 2009, pp. 233-46.CrossRefGoogle Scholar
  35. 35.
    A. Kolsgaard and S. Brusethaug, Mater. Sci. Eng. A, vol. 173, 1993, pp. 213-19.CrossRefGoogle Scholar
  36. 36.
    A. Ourdjini, K. Chew, and B. Khoo, J. Mater. Process. Technol., 116, 2001, pp. 72-76.CrossRefGoogle Scholar
  37. 37.
    S. Shabestari and J. Gruzleski: Metall. Mater. Trans. A, vol. 26A, 1995, pp. 999-1006.CrossRefGoogle Scholar
  38. 38.
    P.L. Schaffer and A.K. Dahle: Mater. Sci. Eng. A, vol. 413, 2005, pp. 373-78.Google Scholar
  39. 39.
    A. Hoffmann, H. Arends, and H. Sie, Filtr. Sep., vol. 28, 1991, pp. 188-93.CrossRefGoogle Scholar
  40. 40.
    D. Chesonis, D. DeYoung, D. Lake, N. Ridler, G. Alcoa Manufacturing, L.W. Works, and W.S.A.I. Swansea: Light Metals, Seattle, 17–21 February, 2002, pp. 937–44.Google Scholar
  41. 41.
    N. Keegan, W. Schneider, and H. Krug: Light Metals, San Diego, California, 28 February–4 March, 1999, pp. 1031–41.Google Scholar
  42. 42.
    N.J. Keegan and S.F. Ray: in Alcastek, Mumbai, India, Dr. Nilmanied, ed., 2002, pp. 1–10.Google Scholar
  43. 43.
    M.W. Kennedy, R. Fritzsch, S. Akhtar, J.A. Bakken, and R.E. Aune: Metall. Trans. B, 2012 (in press).Google Scholar
  44. 44.
    R. Fritzsch, M.W. Kennedy, J.A. Bakken, and R.E. Aune: Light Metals, San Antonio, 3–7 March, 2013 (in press).Google Scholar
  45. 45.
    R. Fritzsch, B. Mirzaei, M.W. Kennedy, J.A. Bakken, and R.E. Aune: Light Metals, San Antonio, 3–7 March, 2013 (in press).Google Scholar
  46. 46.
    K. Yeum and D. Poirier: Light Metals, 1988, pp. 469–76.Google Scholar
  47. 47.
    D. Wang and R. Overfelt: Int. J. Thermophys., vol. 23, 2002, pp. 1063-76.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Mark William Kennedy
    • 1
    • 2
  • Shahid Akhtar
    • 3
  • Jon Arne Bakken
    • 1
  • Ragnhild E. Aune
    • 1
    • 4
  1. 1.Department of Material Science and EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Proval Partners S.A.LausanneSwitzerland
  3. 3.Hydro Aluminium, KarmøyHåvikNorway
  4. 4.Department of Material Science and EngineeringRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations