Skip to main content

Advertisement

Log in

A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Following a series of laboratory-scale experiments, the mechanism of a chemical reaction \(4[\rm{Al}] + 3(\rm{SiO}_2) = 3[\rm{Si}] + 2(\rm{Al}_2\rm{O}_3)\) between high-alloyed TWIP (TWin-Induced Plasticity) steel containing Mn and Al and molten mold flux composed mainly of CaO-SiO2 during the continuous casting process is discussed in the present article in the context of kinetic analysis, morphological evolution at the reaction interface. By the kinetic analysis using a two-film theory, a rate-controlling step of the chemical reaction at the interface between the molten steel and the molten flux is found to be mass transport of Al in a boundary layer of the molten steel, as long as the molten steel and the molten flux phases are concerned. Mass transfer coefficient of the Al in the boundary layer (\(k_{\rm{Al}}\)) is estimated to be 0.9 to 1.2 × 10−4 m/s at 1773 K (\(1500\,^{\circ}\)C). By utilizing experimental data at various temperatures, the following equation is obtained for the \(k_{\rm{Al}}; \ln k_{\rm{Al}} = -14,290/T - 1.1107.\) Activation energy for the mass transfer of Al in the boundary layer is 119 kJ/mol, which is close to a value of activation energy for mass transfer in metal phase. The composition evolution of Al in the molten steel was well explained by the mechanism of Al mass transfer. On the other hand, when the concentration of Al in the steel was high, a significant deviation of the composition evolution of Al in the molten steel was observed. By observing reaction interface between the molten steel and the molten flux, it is thought that the chemical reaction controlled by the mass transfer of Al seemed to be disturbed by formation of a solid product layer of MgAl2O4. A model based on a dynamic mass balance and the reaction mechanism of mass transfer of Al in the boundary layer for the low Al steel was developed to predict (pct Al2O3) accumulation rate in the molten mold flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee, and Y.-B. Kang: Metall. Mater. Trans. B, 2012. DOI: 10.1007/s11663-012-9770-z.

  2. Ooi H., Nozaki T., Yoshii H. (1974) Transactions ISIJ 14:9–16.

    Google Scholar 

  3. Riboud P., Lucas L. (1981) Can. Metall. Quart 20:199–208.

    Article  CAS  Google Scholar 

  4. Gaye H., Lucas L., Olette M., Riboud P. (1984) Can. Metall. Quart 23:179–191.

    Article  CAS  Google Scholar 

  5. Ozturk B., Turkdogan E.T. (1984) Metal Sci 18:299–305.

    Article  CAS  Google Scholar 

  6. Ozturk B., Turkdogan E.T. (1984) Metal Sci 18:306–309.

    Article  CAS  Google Scholar 

  7. Sun H., Mori K. (1996) ISIJ Int 36:S34–S37.

    Article  Google Scholar 

  8. Todoroki H., Mizuno K. (2004) ISIJ Int 44:1350–1357.

    Article  CAS  Google Scholar 

  9. ark D.-C., Jung I.-H., Rhee P. C. H., Lee H.-G. (2004) ISIJ Int 44:1669–1678.

    Article  CAS  Google Scholar 

  10. Rhamdhani M. A., Coley K. S., Brooks G. A. (2005) Metall. Mater. Trans. B 36B:219–227.

    Article  CAS  Google Scholar 

  11. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Proc. of 7th European Continuous Casting Conference, Steel Institute VDEh, Düsseldorf, Germany, 2011

  12. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Proc. of AIST 2011, Association for Iron and Steel Technology, Warrendale, PA, USA, 2011, pp. 1577–86.

  13. Kim D.-J., Park J. H. (2012) Metall. Mater. Trans. B 43B:1–12.

    Google Scholar 

  14. ang Q., Qiu S., Zhao P. (2012) Metall. Mater. Trans. B 43B:424–430.

    Article  Google Scholar 

  15. u P., Wen G.-H., Tang P., Ma F.-J., Wang H. (2011) J. Iron and Steel Res. Int 18:20–25.

    Article  CAS  Google Scholar 

  16. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, Hertfordshire, U.K., 1993.

  17. Fulton J., Chipman J.(1959) Trans. Metall. Soc. AIME, 1959, 215:888–891.

    CAS  Google Scholar 

  18. urkdogan E., Grieveson P., Beisler J. (1963) Trans. Met. Soc. AIME 227:1265–1274.

    CAS  Google Scholar 

  19. awai Y., Mori K., Sakaguchi M. (1970) Tetsu-to-Hagane 56:1447–1455.

    CAS  Google Scholar 

  20. un H., Mori K., Pehlke R. D. (1993) Metall. Trans. B 24B:113–120.

    Article  CAS  Google Scholar 

  21. Thu Hoai L., Lee J. (2011) Metall. Mater. Trans. B 42B:925–927.

    Article  Google Scholar 

  22. Robison J. W., Pehlke R. D. (1974) Metall. Trans., 5:1041–1051.

    Article  CAS  Google Scholar 

  23. Forster E., Richter H. (1968) Arch. Eusenhüttenw 39:595–604.

    Google Scholar 

  24. R. Richardson: Physical Chemistry of Melts in Metallurgy, vol. 2, Academic Press, New York, 1974.

Download references

Acknowledgment

This work was financially supported by POSCO Ltd. through the Steel Innovation Program (Project No. 20118060) to the Graduate Institute of Ferrous Technology, Pohang University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Manuscript submitted August 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YB., Kim, MS., Lee, SW. et al. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux. Metall Mater Trans B 44, 309–316 (2013). https://doi.org/10.1007/s11663-012-9769-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9769-5

Keywords

Navigation