Skip to main content
Log in

A Pseudo-Multicomponent Approach to Important Ternary Silicate Melts

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For the CaO-Al2O3-SiO2, CaO-FeO-SiO2, and MnO-FeO-SiO2 ternary silicate melts, there are few models that can accurately predict their component activities. One model that can make a good correlation between the ternary activities and their sub-binary ones is a pseudo-multicomponent approach based on the molecular interaction volume model (MIVM). It does not need any linear or power series composition functions of binary parameters and also does not require any ternary adjustable parameters in addition to its composition equation. The results show that in the CaO-Al2O3-SiO2 system, the predicted values of SiO2 activity are in good agreement with the experimental data at 1873 K (1600 °C), and those of CaO and Al2O3 are in reasonable agreement with the graphical integration of data using the Gibbs–Duhem equation at 1873 K (1600 °C) and experimental data at 1823 K (1550 °C). In the CaO-FeO-SiO2 and MnO-FeO-SiO2 systems, the predicted values of FeO and MnO activity are in good agreement with the experimental data, and those of CaO and SiO2 are in reasonable agreement with the experimental data at 1823 K, 1873 K, and 1803 K (1550 °C, 1600 °C, and 1533 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Prausnitz, R.N. Lichtenthaler, and E.G.D. Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed., Prentice-Hall Inc., Englewood Cliffs, NJ, 1986, pp. 333–50.

    Google Scholar 

  2. D.P. Tao: Thermochim. Acta, 2000, vol. 363, pp. 105–13.

    Article  CAS  Google Scholar 

  3. D.P. Tao: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 419–24.

    Article  CAS  Google Scholar 

  4. D.P. Tao: J. Alloy Compd., 2008, vol. 457, pp. 124–30.

    Article  CAS  Google Scholar 

  5. H.W. Yang, D.P. Tao, Q.M. Yuan, and Y. Yang: Fluid Phase Equilib., 2009, vol. 275, pp. 64–69.

    Article  CAS  Google Scholar 

  6. I.-H. Jung: CALPHAD, 2010, vol. 34, pp. 332–62.

    Article  CAS  Google Scholar 

  7. H. Mao, M. Hillert, M. Selleby, and B. Sundman: J. Am. Ceram. Soc., 2006, vol. 89, pp. 298–308.

    Article  CAS  Google Scholar 

  8. T.I. Barry, A.T. Dinsdale, and J.A. Gisby: JOM, 1993, vol. 45, pp. 32–38.

    Article  CAS  Google Scholar 

  9. L. Zhang, S. Sun, and S. Jahanshahi: J. Phase Equilib. Diff., 2007, vol. 28, pp. 121–29.

    Article  CAS  Google Scholar 

  10. G. Eriksson and A.D. Pelton: Metall. Trans. B, 1993, vol. 24B, pp. 807–16.

    Article  CAS  Google Scholar 

  11. H. Gaye and J. Welfringer: In: Proc. AIME Symposium on Metallurgical Slags and Fluxes, TMS-AIME, Warrendale, PA, 1984, pp. 357–75.

  12. J. Lehmann, F. Bonnet, and M. Bobadilla: AIST Trans., 2006, vol. 3, pp. 114–23.

    Google Scholar 

  13. A.D. Pelton and M. Blander: Metall. Trans. B, 1986, vol. 17B, pp. 805–15.

    Article  CAS  Google Scholar 

  14. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355–60.

    Article  CAS  Google Scholar 

  15. J. Bjorkvall, D. Sicken, and S. Seethararnan: High Temp. Mater. Proc., 1999, vol. 18, pp. 253–68.

    Article  CAS  Google Scholar 

  16. J. Bjorkvall, D. Sicken, and S. Seethararnan: High Temp. Mater. Proc., 2000, vol. 19, pp. 49–59.

    Article  CAS  Google Scholar 

  17. D.P. Tao: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 1091–97.

    CAS  Google Scholar 

  18. D.P. Tao: J. Mater. Sci. Tech., 2008, vol. 24, pp. 797–802.

    Google Scholar 

  19. D.P. Tao: Acta Metall. Sinica, 2010, vol. 23, pp. 381–95.

    CAS  Google Scholar 

  20. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 738–70.

    Article  Google Scholar 

  21. D.P. Tao: Fluid Phase Equilib., 2006, vol. 250, pp. 83–92.

    Article  CAS  Google Scholar 

  22. M.B. Volf: Chemical Approach to Glass, Elsevier Science Publishers, Amsterdam, The Netherlands, 1984, pp. 52–127.

    Google Scholar 

  23. R.H. Rein and J. Chipman: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 415–25.

    CAS  Google Scholar 

  24. V.V. Bondar, S.I. Lopatin, and V.L. Stolyarova: Inorg. Mater., 2005, vol. 41, pp. 362–69.

    Article  CAS  Google Scholar 

  25. H. Fujita, Y. Iritani, and S. Maruhashi: Iron Steel, 1968, vol. 54, pp. 359–70.

    CAS  Google Scholar 

  26. Y.X. Zou, J.C. Zhou, Y.S. Xu, and P.N. Zhao: Acta Metall. Sinica, 1982, vol. 18, pp. 127–40.

    CAS  Google Scholar 

  27. J.C. Zhou, Y.X. Zou, P.N. Zhao, and H.M. Li: Acta Metall. Sinica, 1988, vol. 24, pp. SB22–31.

  28. V.D. Eisenhuttenleute: Slag Atlas, Verlag Stahleisen m.b.H., Dusseldorf, Germany, 1981, pp. 150–68.

    Google Scholar 

  29. K.P. Abraham, M.W. Davies, and F.D. Richarson: J. Iron Steel Inst., 1960, vol. 196, pp. 82–89.

    CAS  Google Scholar 

  30. A.R. Serrano and A.D. Pelton: ISIJ Int., 1999, vol. 39, pp. 399–408.

    Article  Google Scholar 

  31. E.T. Turkdogan: Physicochemical Properties of Molten Slags and Glasses, The Metals Society, London, U.K., 1983, pp. 95–105.

    Google Scholar 

  32. K. Kume, K. Morita, T. Miki, and N. Sano: ISIJ Int., 2000, vol. 40, pp. 561–66.

    Article  CAS  Google Scholar 

  33. K. Morita, K. Kume, and N. Sano: ISIJ Int., 2000, vol. 40, pp. 554–60.

    Article  CAS  Google Scholar 

  34. D.A.R. Kay and J. Taylor: Trans. Faraday Soc., 1960, vol. 56, pp. 1372–86.

    Article  CAS  Google Scholar 

  35. F. Oeters: Metallurgy of Steelmaking, Verlag Stahleisen mbH, Dusseldorf, Germany, 1994, p. 46.

  36. P.J. Flory: J. Chem. Phys., 1941, vol. 9, p. 660.

    Article  CAS  Google Scholar 

  37. P.J. Flory: J. Chem. Phys., 1942, vol. 10, p. 51.

    Article  CAS  Google Scholar 

  38. M.L. Huggins: Ann. N. Y. Acad. Sci., 1942, vol. 43, p. 1.

    Article  CAS  Google Scholar 

  39. G.M. Wilson: J. Am. Chem. Soc., 1964, vol. 86, pp. 127–30.

    Article  CAS  Google Scholar 

  40. H. Renon and J.M. Prausnitz: AIChE J., 1968, vol. 14, pp. 135–44.

    Article  CAS  Google Scholar 

  41. D.P. Tao: J. Mater. Sci. Technol., 2006, vol. 22, pp. 559–64.

  42. Z.D. Gao and G.L. Guo: An Introduction to Statistical Thermodynamics, Peking University Press, Beijing, China, 2004, pp. 362–71.

    Google Scholar 

Download references

This work was financially supported by the National Natural Science Foundation of China under grant no. 51090381 and grand no. 50764006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ping Tao.

Additional information

Manuscript submitted February 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, DP. A Pseudo-Multicomponent Approach to Important Ternary Silicate Melts. Metall Mater Trans B 43, 1247–1261 (2012). https://doi.org/10.1007/s11663-012-9719-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9719-2

Keywords

Navigation