Skip to main content
Log in

Neural-Net–Based Predictive Modeling of Spout Eye Size in Steelmaking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Gas stirring is commonly used in pyrometallurgical vessels to enhance mass and heat transfer and to promote impurity removal. In the case of secondary steelmaking, the spout eye area is caused by the escape of the gas from the top of the smelt where the liquid steel is directly exposed to the air, and oxygen can be picked up through the spout eye area that can reduce the quality of steel. Thus, controlling the size of the spout eye area is very important to improving the quality of the steel and to keeping the consistency of the product. The set of prevailing models to predict spout eye size are based on specific practically difficult variables, e.g., height of slag in hot upper layer of vessels and gas flow rate at nozzle exit. Recently, the cold model results showed that the stirring process can be conveniently monitored by the signals such as (1) the image signal from the top of the vessel, (2) the sound of the stirring process, and (3) the vibration on the wall of the vessel. This article outlines the key details of a novel research investigation using neural-network–based predictive modeling such as general regression neural networks (GRNN) with genetic adaptive calibrations. Predictive capacities and generalization potentials of five model constructs (i.e., with different sets of input parameters) were explored, and the neural net modeling yielded encouraging outcomes, e.g., (1) excellent goodness-of-fit generalization measures including high values of correlation and R 2 validation parameters (e.g., r = 0.921 and R 2 = 0.845 in a model validation), and (2) low values of root mean square of errors (e.g., 3.034). Overall, the research outlined in this article demonstrates that the spout eye size can be effectively predicted by predictive neural net modeling with convenient and practically measurable variables such as sound and vibration observations on the steelmaking vessels. These results have only been demonstrated for a cold model of the process, and further work is required to show that this approach can be extended to industrial operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A*:

nondimensional spout eye area

a :

average relative spout eye area within 4.0 seconds

v :

average vibration magnitude (m/s2)

\( \dot{v}_{i} \) :

acceleration collected on the wall of the vessel at a sampling rate of 250 Hz, m/s2

vf :

summation of vibration amplitudes corresponding to the frequency (1–120 Hz)

l i :

amplitude of the spectrum

s :

average of sound intensity (W/m2)

sf :

summation of sound amplitudes corresponding to the frequency (500–4500 Hz)

h :

height of upper layer slag/oil (m)

Q :

stirring gas flow rate (m3/s)

R 2 :

coefficient of multiple determination, known as the Nash-Sutcliffe efficiency coefficient

r :

correlation between the actual and predicted values

RMSE:

root mean square of errors

References

  1. E. Turkdogan and R.J. Fruehan: Fundamentals of Iron and Steelmaking, 11th ed., R.J. Fruehan, ed., The AISE Steel Foundation, Warrendale, PA, 1998.

  2. G.A. Brooks and Subgayo: ISSTech 2003 Conference Proceedings, Iron & Steel Society, Warrendale, PA, 2003.

  3. G.A. Brooks and Subgayo: Ironmaker Steelmaker, 2003, vol. 30 (10), pp. 17–21.

  4. K.J. Graham, K. Krishnapisharody, G.A. Irons, and J.F. MacGregor: Can. Metall. Q., 2007, vol. 46 (4), pp. 397–406.

    CAS  Google Scholar 

  5. Subagyo and G.A. Brooks: ISIJ Int., 2003, vol. 43 (8), pp. 1286–89.

  6. M. Iguchi, K.-I. Miyamoto, S. Yamashita, D. Iguchi, and M. Zeze: ISIJ Int., 2004, vol. 44, no. 3, pp. 636–38.

    Article  CAS  Google Scholar 

  7. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 763–72.

    Article  CAS  Google Scholar 

  8. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 501–02.

    Article  CAS  Google Scholar 

  9. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 367–75.

    Article  CAS  Google Scholar 

  10. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 377–88.

    Article  CAS  Google Scholar 

  11. D. Mazumdar and J.W. Evans: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 400–04.

    Article  CAS  Google Scholar 

  12. D. Mazumdar and J.W. Evans: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 497–99.

    Article  CAS  Google Scholar 

  13. Subagyo, G.A. Brooks, and G.A. Irons: ISIJ Int., 2003, vol. 43 (2), pp. 262–63.

  14. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 411–18.

    Article  CAS  Google Scholar 

  15. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 461–68.

    Article  CAS  Google Scholar 

  16. K. Yonezawa and K. Schwerdtfeger: ISIJ Int., 2004, vol. 44(1), pp. 217–19.

    Article  CAS  Google Scholar 

  17. K.J. Graham, K. Krishnapisharody, G.A. Irons, and J.F. MacGregor: AISTech - Iron and Steel Technology Conference Proceedings, 2007.

  18. X. Xu, G.A. Brooks, and W. Yang: Chemeca 2008, Newcastle, Australia. 2008.

    Google Scholar 

  19. X. Xu, G. Brooks, and W. Yang: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1025–32.

    Article  CAS  Google Scholar 

  20. X. Xu, G.A. Brooks, and W. Yang: 2010 TMS Conference (Jim Evans Symposium), Seattle, WA, 2010.

  21. S. Haykin: Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999.

  22. X. Liu and D.T. Pham: Neural Networks for Identification, Prediction, and Control, Springer-Verlag, London, U.K., 1995.

    Google Scholar 

  23. P. Peretto: An Introduction to Modeling of Neural Networks, Cambridge University Press, Cambridge, U.K., 1992.

    Book  Google Scholar 

  24. V.N. Vapnik: The Nature of Statistical Learning Theory, 2nd ed., Springer-Verlag, New York, NY, 2000.

    Google Scholar 

  25. M.A. Reuter, T.J. Van Der Walt, and J.S.J. Van Deventer: Metall. Trans. B, 1992, vol. 23B, pp. 643–50.

    Article  CAS  Google Scholar 

  26. A. Meghlaoui, R.T. Bui, J. Thibault, L. Tikasz, and R. Santerre: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1007–19.

    Article  CAS  Google Scholar 

  27. W. Chang and S. Na: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 723–31.

    Article  CAS  Google Scholar 

  28. E. Palaneeswaran, P.E.D. Love, M. Kumaraswamy, and S.T. Ng: Build. Res. Inform., 2008, vol. 36, no. 5, pp. 450–65.

    Article  Google Scholar 

  29. Z. Zivkovic, I. Mihajlovic, I. Djuric, and N. Strbac: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1116–22.

    Article  CAS  Google Scholar 

  30. L. Rutkowski:. IEEE Trans. Neural Networks, 2004, vol. 15, no. 3, pp. 576–96.

    Article  Google Scholar 

  31. D.F. Specht: IEEE Trans. Neural Networks, 1991, vol. 2, no. 6, pp. 568–76.

    Article  CAS  Google Scholar 

  32. X.D. Xu, G.A. Brooks, and W. Yang: Ironmaking Steelmaking, 2010, vol. 37, no. 8, pp. 620–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Brooks.

Additional information

Manuscript submitted June 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palaneeswaran, E., Brooks, G. & Xu, X.B. Neural-Net–Based Predictive Modeling of Spout Eye Size in Steelmaking. Metall Mater Trans B 43, 571–577 (2012). https://doi.org/10.1007/s11663-012-9636-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9636-4

Keywords

Navigation