Skip to main content

Oxidation Behavior and Mechanism of Pentlandite at 973 K (700 °C) in Air

Abstract

The oxidation behavior of synthetic pentlandite at 973 K (700 °C) under isothermal conditions was investigated. The pentlandite sample (Ni,Fe)9S8 was synthesized from pure components and oxidized at 973 K (700 °C) in air in a muffle furnace. The phase identification and components analysis of the oxidation products were performed by using the Rietveld quantitative analysis method based on the powder X-ray diffraction (XRD) profiles and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The magnetic hysteresis loops were determined by a vibrating sample magnetometer. Fe2O3, Ni x Fe3-x O4, and NiO were dominant oxidation products, and their weight fractions changed in different ways along with the oxidation time. The nickel-rich phase and sulfur-rich phase were observed as intermediate phases in unreacted cores during oxidation, which led to the formation of gaps and holes. The oxidation reaction rate was rapid in the first 2 hours, and then it slowed down sharply.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Z.Y. Lu, M.I. Jeffrey, Y. Zhu, and F. Lawson: Hydrometallurgy, 2000, vol. 56, pp. 63–74.

    Article  CAS  Google Scholar 

  2. 2.

    V. Rajamani and C.T. Prewitt: Can. Mineral., 1973, vol. 12, pp. 178–87.

    Google Scholar 

  3. 3.

    K. Tsukimura and H. Nakazawa: Acta Crystallogr., Sect. B: Struct. Sci., 1984, vol. 40, pp. 364–67.

    Article  Google Scholar 

  4. 4.

    K. Tsukimura: Mineral. J., 1989, vol. 14, pp. 323–37.

    Article  CAS  Google Scholar 

  5. 5.

    A. Sugaki and A. Kitakaze: Am. Mineral., 1998, vol. 83, pp. 133–40.

    CAS  Google Scholar 

  6. 6.

    B. Wu, X. Chen, and J. Huang: Min. Metall. Eng., 1986, vol. 6, pp. 6.

    Google Scholar 

  7. 7.

    X. Zheng and X. Chen: Nonferrous Met., 1983, vol. 35, pp. 6.

    Google Scholar 

  8. 8.

    T. Tanabe, K.I. Kawaguchi, Z. Asaki, and Y. Kondo: Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 9.

    Google Scholar 

  9. 9.

    J.G. Dunn and C.E. Kelly: J. Therm. Anal. Calorim., 1980, vol. 18, pp. 147–54.

    Article  CAS  Google Scholar 

  10. 10.

    V. Rajamani and C. Prewitt: Am. Mineral., 1975, vol. 60, p. 10.

    Google Scholar 

  11. 11.

    G. Kullerud: Can. Mineral., 1963, vol. 7, pp. 353–66.

    CAS  Google Scholar 

  12. 12.

    C. Tenailleau: Am. Mineral., 2006, vol. 91, pp. 1442–47.

    Article  CAS  Google Scholar 

  13. 13.

    A. Sugaki and A. Kitakaze: 29th lnt. Geological Cong., Kyoto, Japan, 1992, vol. 3, p. 676.

  14. 14.

    A. Warner, C. Díaz, A. Dalvi, P. Mackey, A. Tarasov, and R. Jones: JOM, 2007, vol. 59, pp. 58–72.

    Article  CAS  Google Scholar 

  15. 15.

    R. Pandher, S. Thomas, D. Yu, M. Barati, and T. Utigard: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 291–99.

    Article  Google Scholar 

  16. 16.

    J.G. Dunn and C.E. Kelly: J. Therm. Anal. Calorim., 1977, vol. 12, pp. 43–52.

    Article  CAS  Google Scholar 

  17. 17.

    J.G. Dunn: Thermochim. Acta, 1997, vol. 300, pp. 127–39.

    Article  CAS  Google Scholar 

  18. 18.

    R. Pandher and T. Utigard: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 780–89.

    Article  CAS  Google Scholar 

  19. 19.

    L.C. Mackey: Ph.D. Dissertation, Curtin University of Technology, Curtin, Australia, 1991.

  20. 20.

    T.E. Warner, N.M. Rice, and N. Taylor: Hydrometallurgy, 1992, vol. 31, pp. 55–90.

    Article  CAS  Google Scholar 

  21. 21.

    D.L. Legrand, G.M. Bancroft, and H.W. Nesbitt: Am. Mineral., 2005, vol. 90, pp. 1042–54.

    Article  CAS  Google Scholar 

  22. 22.

    D.L. Legrand, G.M. Bancroft, and H.W. Nesbitt: Am. Mineral., 2005, vol. 90, pp. 1055–61.

    Article  CAS  Google Scholar 

  23. 23.

    S. Richarson and D.J. Vaughan: Mineral. Mag., 1989, vol. 53, pp. 10.

    Google Scholar 

  24. 24.

    C. Tenailleau, A. Pring, B. Etschmann, J. Brugger, B. Grguric, and A. Putnis: Am. Mineral., 2006, vol. 91, pp. 706–09.

    Article  CAS  Google Scholar 

  25. 25.

    Y. Peng, B. Wang, and D. Bradshaw: Miner. Eng., 2011, vol. 24, pp. 85–87.

    Article  CAS  Google Scholar 

  26. 26.

    Y. Ngothai, F. Xia, A. Pring, B. O’Neill, J. Brugger, G. Chen, and C. Colby: Chemeca 2007 Conf., Sofitel Melbourne, Victoria, Australia, 2007.

    Google Scholar 

  27. 27.

    D.J. Vaughan and R.G. Burns: Geol. Soc. Am. Abstr. Prog., 1971, vol. 3, pp. 1.

    Google Scholar 

  28. 28.

    V.A. Drebushchak, T.A. Kravchenko, and V.S. Pavlyuchenko: J. Cryst. Growth, 1998, vol. 193, pp. 728–31.

    Article  CAS  Google Scholar 

  29. 29.

    F. Xia, J. Zhou, J. Brugger, Y. Ngothai, B. O’Neill, G. Chen, and A. Pring: Chem. Mater., 2008, vol. 20, pp. 2809–17.

    Article  CAS  Google Scholar 

  30. 30.

    H. Wang, A. Pring, Y. Xie, Y. Ngothai and B. O’Neill: Thermochim. Acta, 2005, vol. 427, pp. 13–25.

    Article  CAS  Google Scholar 

  31. 31.

    H. Rietveld: Acta Cryst., 1967, vol. 22, pp. 151–52.

    Article  CAS  Google Scholar 

  32. 32.

    E.H. Kisi: Mater. Forum, 1994, vol. 18. pp. 135–53.

  33. 33.

    L. Lutterotti and H. Wenk: 12 th Int. Conf. Textures of Mater. (ICOTOM-12), Montreal, Canada, 1999.

  34. 34.

    R.J. Hill and C.J. Howard: J. Appl. Crystallogr., 1987, vol. 20, pp. 467–74.

    Article  CAS  Google Scholar 

  35. 35.

    A.P. Roberts, Y. Cui, and K.L. Verosub: J. Geophys. Res., 1995, vol. 100, pp. 17909–24.

    Article  Google Scholar 

  36. 36.

    L.M. Pidgeon and P.G. Thornhill: JOM, 1957, vol. 209, pp. 7.

    Google Scholar 

  37. 37.

    H. Seim, H. Fjellvâg, F. Grønvold, and S. Stølen: J. Solid State Chem., 1996, vol. 121, pp. 400–07.

    Article  CAS  Google Scholar 

  38. 38.

    Y. Liu, L. Norén, R.L. Withers, J. Hadermann, G. Van Tendeloo, and F.J. García–García: J. Solid State Chem., 2003, vol. 170, pp. 351–60.

    Article  CAS  Google Scholar 

  39. 39.

    E. Burger, D. Bourgarit, V. Frotté, and F. Pilon: J. Therm. Anal. Calorim., 2011, vol. 103, pp. 249–56.

    Article  CAS  Google Scholar 

  40. 40.

    J.G. Dunn and A.C. Chamberlain: J. Therm. Anal. Calorim., 1991, vol. 37, pp. 1329–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Grant 2007CB613601 from the National Key Program for Basic Research of 973 Program and grants 20731001, 50725415, 50704003, and 21031005 National Natural Science Foundation of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xianran Xing.

Additional information

Manuscript submitted May 31, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, H., Chen, J., Deng, J. et al. Oxidation Behavior and Mechanism of Pentlandite at 973 K (700 °C) in Air. Metall Mater Trans B 43, 494–502 (2012). https://doi.org/10.1007/s11663-011-9630-2

Download citation

Keywords

  • Hematite
  • NiFe2O4
  • Oxidation Mechanism
  • Magnetic Hysteresis Loop
  • NiSO4