Skip to main content
Log in

Calculation and Analysis of Liquid Holdup in Lower Blast Furnace by Model Experiments

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A hydromechanics experiment on the countercurrent flow of gas and liquid simulating the flow conditions in the lower blast furnace was carried out. A cold model of a packed bed with various packing materials and liquids was used to study the holdup of liquid. Correlations for static holdup, dynamic holdup, and total holdup were obtained. A good agreement was found between the calculated and experimental data. A mathematical model simulating the flow fields was applied to study the effect of liquid holdup in blast furnace. The results of the model calculation show that static holdup is the determinant of the total holdup of molten materials when the blast furnace works in stable condition. The slag phase generally reaches flooding holdup ahead of the hot metal. The radial distribution of gas flow is almost not influenced by the holdup of molten materials, but it has a greater influence on the pressure drop. The size of coke has far greater influence on static holdup than liquid properties does. The study is useful for acquiring a deeper understanding of the complex phenomena in the blast furnace and for determining appropriate operational actions under different production conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

d :

diameter (m)

F r :

Froude number

g:

acceleration of gravity (9.81 m s−2)

h d :

dynamic holdup (pct)

h s :

static holdup (pct)

h t :

total holdup (pct)

u :

superficial velocity (m s−1)

ρ :

density (kg m−3)

μ :

viscosity (Pa s)

σ :

surface tension (N m−1)

a :

specific surface area (m−1)

ε :

porosity

φ :

shape factor

F:

flooding point

g:

gas

l:

liquid

p:

packing

S:

loading point

w:

water

References

  1. A.K. Biswas: Principles of Blast Furnace Ironmaking: Theory and Practice, Cootha Publishing House, Brisbane, Australia, 1981.

    Google Scholar 

  2. Y. Omori: Blast Furnace Phenomena and Modeling, Elsevier Applied Science, London, UK, 1987.

    Google Scholar 

  3. J. Yagi: ISIJ Int., 1993, vol. 33, no. 6, pp. 619–39.

    Article  CAS  Google Scholar 

  4. P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1997, vol. 37, no. 5, pp. 458–67.

    Article  CAS  Google Scholar 

  5. G.X. Wang, S.J. Chew, A.B. Yu, and P. Zulli: Metall. Mater. Trans. B, 1997, vol. 28B, no. 2, pp. 333–43.

    Article  CAS  Google Scholar 

  6. S. Pintowantoro, H. Nogami, and J. Yagi: ISIJ Int., 2004, vol. 44, no. 2, pp. 304–09.

    Article  CAS  Google Scholar 

  7. B.H. Xu, A.B. Yu, S.J. Chew, and P. Zulli: Powder Technol., 2000, vol. 109, no. 3, pp. 13–26.

    Article  CAS  Google Scholar 

  8. H. Nogami, H. Yamaoka, and K. Takatani: ISIJ Int., 2004, vol, 44, no. 12, pp. 2150–58.

    Article  CAS  Google Scholar 

  9. M.S. Chu, H. Nogami, and J. Yagi: ISIJ Int., 2004, vol. 44, no. 3, pp. 510–17.

    Article  CAS  Google Scholar 

  10. J.A. Castro, A.J. Silva, Y. Sasakl, and J.Yagi: ISIJ Int., 2011, vol. 51, no. 5, pp. 748–58.

    Article  Google Scholar 

  11. X.F. Dong, A.B. Yu, J. Yagi, and P. Zulli: ISIJ Int., 2007, vol. 47, 11, pp. 1553–70.

    Article  CAS  Google Scholar 

  12. P.R. Austin, H. Nogami, and J. Yagi: ISIJ Int., 1998, vol. 38, no. 3, pp. 246–55.

    Article  CAS  Google Scholar 

  13. S.J. Chew, P. Zulli, and A.B. Yu: ISIJ Int., 2001, vol. 41, no. 10, pp. 1112–21.

    Article  CAS  Google Scholar 

  14. G.S. Gupta, J.D. Litster, V.R. Rudolph, E.T. White, and A. Domanti: ISIJ Int., 1996, vol. 36, no. 1, pp. 32–39.

    Article  CAS  Google Scholar 

  15. S.J. Chew, G.X. Wang, A.B. Yu, and P. Zulli: Ironmaking Steelmaking, 1997, vol. 24, no. 5, pp. 392–400.

    CAS  Google Scholar 

  16. H. Kawabata, Z.G. Liu, F. Fujita, and T. Usui: ISIJ Int., 2005, vol. 45, no. 10, pp. 1466–73.

    Article  CAS  Google Scholar 

  17. D.Y. Liu, S. Wijeratne, and J.D. Litster: Scand. J. Metall., 1997, vol. 26, no. 2, pp. 79–84.

    CAS  Google Scholar 

  18. M. Li, Y. Bando, R. Tanigawara, T. Tsuge, K. Yasuda, and M. Nakamura: J. Chem. Eng. Jpn., 2001, vol. 34, no. 7, pp. 948–55.

    Article  CAS  Google Scholar 

  19. Y. Bando, S. Hayashi, A. Matsubara, and M. Nakamura: ISIJ Int., 2005, vol. 45, no. 10, pp. 1461–65.

    Article  CAS  Google Scholar 

  20. W.M. Husslage, M.A. Reuter, R.H. Heerema, T. Bakker, and A.G.S. Steeghs: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 765–76.

    Article  CAS  Google Scholar 

  21. T. Fukutake and V. Rajakumar: Tetsu-to-Hagané, 1980, vol. 66, no. 13, pp. 1937–46.

    CAS  Google Scholar 

  22. M. Amatatsu: Tetsu-to-Hagané, 1984, vol. 70, no. 12, p. S773.

    Google Scholar 

  23. Y. Sassa: Tetsu-to-Hagané, 1987, vol. 73, no. 12, p. S842.

    Google Scholar 

  24. T. Sugiyama, T. Nakagawa, H. Sibaike, and Y. Oda: Tetsu-to-Hagané, 1987, vol. 73, no. 15, pp. 2044–51.

    CAS  Google Scholar 

  25. Y. Eto, K. Takeda, S. Miyagawa, S. Taguchi, and H. Itaya: ISIJ Int., 1993, vol. 33, no. 6, pp. 681–86.

    Article  CAS  Google Scholar 

  26. T. Usui, K. Masamori, H. Kawabata, and Z. Morita: ISIJ Int., 1993, vol. 33, no. 6, pp. 687–96.

    Article  CAS  Google Scholar 

  27. M. Niu, T. Akiyama, R. Takahashi, and J. Yagi: AIChE J., 1996, vol. 42, no. 4, pp. 1181–86.

    Article  CAS  Google Scholar 

  28. W.M. Husslage, A.G.S. Steeghs, and R.H. Heerema: 60th Ironmaking Conf. Proc., 2001, pp. 323–35.

  29. Y. Niwa, T. Sumigama, A. Maki, S. Nagano, A. Sakai, and M. Sakurai: Tetsu-to-Hagané, 1990, vol. 76, no. 3, pp. 337–44.

    CAS  Google Scholar 

  30. R.H. Perry: Perry’s Chemical Engineers’ Handbook., McGraw-Hill Book Co., New York, NY, 1997.

    Google Scholar 

  31. J.F. Davidson: Trans. Inst. Chem. Eng., 1959, vol. 37, no. 2, pp. 131–36.

    CAS  Google Scholar 

  32. D.M. Mohunta and G.S. Laddha: Chem. Eng. Sci., 1965, vol. 20, no. 12, pp. 1069–72.

    Article  CAS  Google Scholar 

  33. J.E. Buchanan: Ind. Eng. Chem. Fundam., 1967, vol. 6, no. 3, pp. 400–07.

    Article  CAS  Google Scholar 

  34. R. Billet and M. Schultes: IChemE. Symp. Ser., 1992, vol. 128, pp. B129–36.

    CAS  Google Scholar 

  35. R. Billet: Packed Column Analysis and Design, Ruhr University Press, Bochum, Germany, 1989.

    Google Scholar 

  36. X.G. Bi, J. Qiu, W. Wang, Y. Bi, S. Lu, J. Cheng, Y. Xia, and X. Gu: Ironmaking Steelmaking, 2001, vol. 28, no. 1, pp. 27–32.

    Article  CAS  Google Scholar 

  37. M. Ichida: Tetsu-to-Hagané, 1987, vol. 73, no. 12, p. S748.

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from Grant 50901054 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong.

Additional information

Manuscript submitted July 25, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, W., Bi, XG., Wang, GQ. et al. Calculation and Analysis of Liquid Holdup in Lower Blast Furnace by Model Experiments. Metall Mater Trans B 43, 562–570 (2012). https://doi.org/10.1007/s11663-011-9628-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9628-9

Keywords

Navigation