Skip to main content
Log in

A Kinetic Study of the Effect of Basicity on the Mold Fluxes Crystallization

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of basicity on the mold fluxes crystallization was investigated in this article. The time-temperature-transformation (TTT) diagrams and continuous-cooling-transformation (CCT) diagrams of mold fluxes with different basicity were constructed by using single, hot thermocouple technology (SHTT). The results showed that with the increase of basicity, the incubation time of isothermal crystallization became shorter, the crystallization temperature was getting higher, and the critical cooling rate of continuous cooling crystallization became faster. The X-ray diffraction analysis suggested that calcium silicate (CaO·SiO2) was precipitated at the upper part of the TTT diagram and cuspidine (Ca4Si2O7F2) was formed at the lower part, when the basicity of mold fluxes was within 1.0 to 1.2. However, when basicity was 0.8, only the cuspidine phase was formed. A kinetic study of isothermal crystallization process indicated that the increase of the basicity tended to enhance the mold flux crystallization, and the crystallization activation energy became smaller. The crystallization mechanism of cupsidine was changing from one-dimensional growth to three-dimensional growth with a constant number of nuclei, when the basicity of mold fluxes varied from 0.8 to 1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, no. 1, pp. 26-34.

    Article  CAS  Google Scholar 

  2. Y. Meng, B.G. Thomas, A.A Polycarpou, H. Henein, and A. Prasad: MS & T 2004 Conf. Proc., New Orlean, LA, AIST, Warrendale, PA, 2004, pp. 57–67.

  3. Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, and K. Ishii: ISIJ Int., 1998, vol. 38, no. 4, pp. 348-56.

    Article  CAS  Google Scholar 

  4. C. Orrling and A.W. Cramb: Metall. Mater. Trans. B., 2000, vol. 31B, pp. 403-06.

    Article  CAS  Google Scholar 

  5. C. Orrling, S. Sridhar, and A.W. Cramb: High Temp. Mater. Process., 2001, vol. 20, nos. 3-4, pp. 195-200.

    CAS  Google Scholar 

  6. T. Watanabe, H. Fukuyama, M. Susa, and K. Nagata: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1273-81.

    Article  CAS  Google Scholar 

  7. M. Hanao, M. Kawamoto, and T. Watanabe: ISIJ Int., 2004, vol. 44, no. 5, pp. 827-35.

    Article  CAS  Google Scholar 

  8. Y. Tan and D. Ju: Mater. Sci. Forum, 2011, vols. 675-7, pp. 877-80.

    Google Scholar 

  9. W. Wang, K. Blazek, and A.W. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66-74.

    Article  CAS  Google Scholar 

  10. D. Wang, C. Liu, P. Shi, and M. Jiang: J. Iron Steel Res., 2004, vol. 16, no. 5, pp. 28-32.

    CAS  Google Scholar 

  11. Z. Li, R. Thackray, and K.C. Mills: VII Int. Conf. on Molten Slags, Fluxes and Slats, The Southern African Institute of Mining and Metallurgy, Marshalltown, South Africa, 2004, pp. 813–20.

  12. H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar. ISIJ Int., 2010, vol. 50, no. 8, pp. 1142-50.

    Article  CAS  Google Scholar 

  13. Z. Zhang, G. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, no. 6, pp. 739-46.

    Article  CAS  Google Scholar 

  14. P. Tang: Ph.D. Dissertation, Chongqing University, Chongqing, China, 2010.

  15. M. Persson, M. Gornerup, and S. Seetharaman: ISIJ Int., 2007, vol. 47, no. 10, pp. 1533-40.

    Article  CAS  Google Scholar 

  16. K.C. Mills: ISIJ Int., 1993, vol. 33, no. 1, pp. 148-55.

    Article  CAS  Google Scholar 

  17. N.X. Sun, X.D. Liu, and K. Lu: Scripta Mater., 1996, vol. 34, no. 8, pp. 1201-07.

    Article  CAS  Google Scholar 

  18. W. Wang: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2007.

  19. N. Boonyachut: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2007.

  20. A.A. Elabbar, M. Abu El-Oyoun, and A.A. Abu-Sehly: JTUSCI, 2008, pp. 44–50.

  21. Y. Kashiwaya, C.E. Cicutti, and A.W. Cramb: ISIJ Int., 1998, vol. 38, no. 4, pp. 357-65.

    Article  CAS  Google Scholar 

  22. G. Wen, H. Liu, and P. Tang: J. Iron Steel Res., Int., 2008, vol. 15, no. 4, pp. 32–37.

    Article  CAS  Google Scholar 

  23. A.J Moore, R.J. Phillips, and T.R. Gibbs: Steelmaking Conf. Proc., 1991, pp. 615–21.

  24. K.C. Mills, A.B. Fox, P.P. Thackray, and Z. Li: VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004, pp. 713–21.

  25. K. Prapakorn: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2003.

  26. J.W. Christian: The Theory of Transformations in Metals and Alloys. 3rd ed, Pergamon Press Ltd, London, UK, 2002.

    Google Scholar 

  27. D.R. MacFarlane and M. Fragoulis: Phys. Chem. Glasses, 1986, vol. 37, no. 6, pp. 228-34.

    Google Scholar 

Download references

Acknowledgments

The work was supported by International Science & Technology Cooperation Program of China (2011DFA71390), New Century Excellent Talents Program Award (Chinese Ministry of Education, NCET-10-0797), and the Fundamental Research Funds for the Central Universities (2011JQ010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted May 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Wang, W., Ma, F. et al. A Kinetic Study of the Effect of Basicity on the Mold Fluxes Crystallization. Metall Mater Trans B 43, 354–362 (2012). https://doi.org/10.1007/s11663-011-9591-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9591-5

Keywords

Navigation