Skip to main content
Log in

Film Boiling and Water Film Ejection in the Secondary Cooling Zone of the Direct-Chill Casting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Accurate thermal modeling of the direct-chill casting process relies nowadays on increasingly complex boundary conditions for the secondary cooling zone. A two-dimensional axisymmetric finite-element model of the direct-chill casting process was developed to quantify the importance of secondary cooling at the surface compared with internal heat conduction within the billet. Boiling water heat transfer at the surface was found to dominate and be the governing factor only when stable film boiling or water film ejection take place; all other cases were dominated by internal heat conduction. The influence of various parameters (casting speed, cooling water flow rate, and thermophysical properties of the cast material) on the occurrence of water film ejection was analyzed. An exponential relationship was found between the cooling water flow rate and the minimum casting speed at which water film ejection takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.F. Grandfield and L. Wang: Light Metals 2004, TMS, Warrendale, PA, 2004, pp. 685–90.

  2. W. Roth: Aluminium, 1943, vol. 25, pp. 283-91.

    Google Scholar 

  3. D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13B, pp. 593-602.

    Article  CAS  Google Scholar 

  4. H. Klein: Giesserei, 1953, vol. 10, pp. 441-54.

    Google Scholar 

  5. R. Siegel: Int. J. Heat Mass Trans., 1978, vol. 21, pp. 1421-30.

    Article  CAS  Google Scholar 

  6. D.J.P. Adenis, K.H. Coats, and D.V. Ragone: J. Inst. Met., 1962–63, vol. 91, pp. 395–403.

  7. D.A. Peel and A.E. Pengelly: Iron Steel Inst., 1969, vol. 23, pp. 186-96.

    Google Scholar 

  8. D.C. Weckman, R.J. Pick, and P. Niessen: Z. Metallkunde, 1979, vol. 70, no. 11, pp. 750-57.

    Google Scholar 

  9. J. Du, B.S.J. Kang, K.M. Chang, and J. Harris: Light Metals 1998, TMS, Warrendale, PA, 1998, pp. 1025–30.

  10. G.P. Grealy, J.L. Davis, E.K. Jensen, P.A. Tøndel, and J. Moritz: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 813–21.

  11. J.G. Collier and J.R. Thome: Convective Boiling and Condensation, 4th ed., Oxford University Press, New York, NY, 1996, pp. 148-69.

    Google Scholar 

  12. E. Caron: Ph.D. Dissertation, University of British Columbia, Vancouver, British Columbia, Cananda, 2008.

  13. J. Sengupta, S.L. Cockcroft, D.M. Maijer, M.A. Wells, and A. Larouche: J. Light Met., 2002, vol. 2, pp. 137-48.

    Article  Google Scholar 

  14. J. Sengupta, S.L. Cockcroft, D.M. Maijer, M.A. Wells, and A. Larouche: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 532-39.

    Google Scholar 

  15. A. Håkonsen and O.R. Myhr: Cast Met., 1995, vol. 8, no. 3, pp. 147-57.

    Google Scholar 

  16. L. Maenner, B. Magning, and Y. Caratini: Light Metals 1997, TMS, Warrendale, PA, 1997, pp. 701–07.

  17. J.F. Grandfield, A. Hoadley, and S. Instone: Light Metals 1997, TMS, Warrendale, PA, 1997, pp. 1081–90.

  18. H. Hao, D.M. Maijer, M.A. Wells, S.L. Cockcroft, D. Sediako, and S. Hibbins: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3842-54.

    Google Scholar 

  19. E. Caron and M.A. Wells: in Aluminium Alloys: Their Physical and Mechanical Properties, J. Hirsch, B. Skrotzki, and G. Gottstein, eds., Wiley-VCH, Weinheim, Germany, 2008, vol. 1, pp. 400–06.

  20. E. Caron and M.A. Wells: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 585-95.

    Article  CAS  Google Scholar 

  21. D.R. Poirier and E.J. Poirier: J. Miner. Met. Mater. Soc., 1992, pp. 41–44.

  22. H. Yu: Light Metals 2005, TMS, Warrendale, PA, 2005, pp. 983–87.

  23. A. Larouche, Y. Caron, and D. Kocaefe: Light Metals 1998, TMS, Warrendale, PA, 1998, pp. 1059–64.

  24. J.F. Grandfield, A. Hoadley, and S. Instone: Light Metals 1997, TMS, Warrendale, PA, 1997, pp. 691–99.

  25. J. Langlais, T. Bourgeois, Y. Caron, G. Beland, and D. Bernard: Light Metals 1995, TMS, Warrendale, PA, 1995, pp. 979–86.

  26. H. Yu: Light Metals 1980, TMS, Warrendale, PA, 1980, pp. 613–28.

  27. R.F.T. Wilkins: Light Metals 1983, TMS, Warrendale, PA, 1983, pp. 907–20.

  28. R.E. Greene and J.L. Kirby: Light Metals 1989, TMS, Warrendale, PA, 1989, pp. 859–65.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Caron.

Additional information

Manuscript submitted April 30, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, E., Wells, M.A. Film Boiling and Water Film Ejection in the Secondary Cooling Zone of the Direct-Chill Casting Process. Metall Mater Trans B 43, 155–162 (2012). https://doi.org/10.1007/s11663-011-9579-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9579-1

Keywords

Navigation