Skip to main content
Log in

Some Observations on Microstructural Changes in a Mg-Based AE42 Alloy Subjected to Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The main aim of the current study is the analysis of friction stir processing (FSP) of Mg-based alloys as a possible tool for nanocomposites production. The study reports microstructural changes taking place in a Mg-based alloy (AE42) subjected to FSP under different cooling conditions. The FSP process was carried out with single as well as multipass options. The friction stir processed samples were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), focused ion beam (FIB)-scanning ion microscopy (SIM), and X-ray diffraction (XRD). It was observed that FSP tends to fragment the elongated precipitates and produces near homogeneous distribution of fine particles. The smallest particle size was observed to be produced by double-pass FSP supplemented by rapid cooling, thereby generating in situ nanocomposites. Vickers microhardness testing was done along the thickness (transverse direction) of the specimen to study and understand the variation of hardness with thickness. Nearly a two-times increase in the microhardness of AE42 was observed in the case of double-pass, FSP AE42 with cooling at temperature of approximately 253 K (–20 °C). To confirm these observations, another magnesium alloy AM50 was also friction stir processed under similar conditions. The fine submicron grain structure produced in AE42 alloy contributed immensely toward grain boundary strengthening and Orowan strengthening had only marginal influence. Subgrain boundary pinning by in situ nanoparticles contributed significantly in the strengthening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. H. Friedrich and S. Schumann: J. Mater. Proc. Technol., 2001, vol. 117, pp. 276-81.

    Article  CAS  Google Scholar 

  2. S.F. Hassan and M. Gupta: J. Alloy Comp., 2006, vol. 419, pp. 84-90.

    Article  CAS  Google Scholar 

  3. Y. Morisada, H. Fujji, T. Nagaoka, and M. Fukusumi: Mater. Sci. Eng. A, 2006, vol. 433, pp. 50-54.

    Article  Google Scholar 

  4. B. Darras, M. Khraisheh, F. Abufarha, and M. Omar: J. Mater. Proc. Technol., 2007, vol. 191, pp. 77-81.

    Article  CAS  Google Scholar 

  5. W. Woo, H. Choo, M. Prime, Z. Feng, and B. Clausen: Acta Mater., 2008, vol. 56, pp. 1701-11.

    Article  CAS  Google Scholar 

  6. Y. Morisada, H. Fujji, T. Nagaoka, and M. Fukusumi: Mater. Sci. Eng. A, 2006, vol. 419, pp. 344-48.

    Article  Google Scholar 

  7. C.I Chang, Y.N. Wang, H.R. Pei, C.J. Lee, C.H. Du, and J.C. Huang: Key Eng. Mater. Comp. Mater., 2007, vol. 351, pp.114-19.

    Article  CAS  Google Scholar 

  8. C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, and J.C. Huang: Mater. Trans., 2006, vol. 47, pp. 2942-49.

    Article  CAS  Google Scholar 

  9. P. Cavaliere and P.P. DeMarco: Mater. Proc. Tech., 2007, vol. 184, pp. 77-83.

    Article  CAS  Google Scholar 

  10. P. Cavaliere and P.P. DeMarco: Mater. Charact., 2007, vol. 58, pp. 226-32.

    Article  CAS  Google Scholar 

  11. S.K. Thakur, B.K. Dhindaw, N. Hort, and K.U. Kainer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1167-76.

    CAS  Google Scholar 

  12. S. Ugandhar, M. Gupta, and S.K. Sinha: Compos. Struct., 2006, vol. 72, pp. 256-72.

    Article  Google Scholar 

  13. D.U. X. Hao and W.U. BaoLin: Sci. China Ser. E-Tech. Sci., 2009, vol. 52, no. 6, pp. 1751-55.

    Article  Google Scholar 

  14. H. Somekawa and T. Mukai: Scripta Mater., 2006, vol. 54, pp. 633-38.

    Article  CAS  Google Scholar 

  15. V.N. Chuvildeev, T.G. Nieh, and M.Y. Gryaznov: Scripta Mater., 2004, vol. 50, pp. 861-65.

    Article  CAS  Google Scholar 

  16. A. Yamashita, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2001, vol. 300A, pp. 142-47.

    Google Scholar 

  17. R.S. Mishra and M.W. Mahoney: Mater. Sci. Forum., 2001, vol. 357, no. 3, pp. 507-02.

    Article  Google Scholar 

  18. R.S. Mishra, M.W. Mahoney, and S.X. McFadden: Scripta Mater., 2000, vol. 42, pp. 163-68.

    CAS  Google Scholar 

  19. S. Benavides, Y. Li, and L.E. Murr: Proc. Ultrafined Grained Materials Conf., 2000, pp. 155–68.

  20. N. Saito, I. Shigematsu, and T. Komaya: J. Mater. Sci. Lett., 2001, vol. 20, pp. 1913-15.

    Article  CAS  Google Scholar 

  21. Y.J. Kwon, N. Saito, and I. Shigematsu: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1473-76.

    Article  CAS  Google Scholar 

  22. T.A. Freeney and R.S. Mishra: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 73-84.

    Article  CAS  Google Scholar 

  23. D.R. Ni, D. Wang, A.H. Feng, G. Yao, and Z.Y. Ma: Scripta Mater., 2009, vol. 61, pp. 568-71.

    Article  CAS  Google Scholar 

  24. P. Cavaliere and P.P. DeMarco: J. Mater. Process. Technol., 2007, vol. 184, pp. 77-83.

    Article  CAS  Google Scholar 

  25. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang: Acta Mater., 2006, vol. 54, pp. 5241-49.

    Article  CAS  Google Scholar 

  26. C.J. Hsu, P.W. Kao, and N.J. Ho: Scripta Mater., 2005, vol. 3, pp. 341-45.

    Google Scholar 

  27. Q. Zhang, B.L. Xiao, Q.Z. Wang, and Z.Y. Ma: Mater. Lett., 2011, vol. 65, pp. 2070-72.

    Article  CAS  Google Scholar 

  28. P. Asadi, G. Faraji, and M.K. Besharati: Int. J. Adv. Manuf. Technol., 2010, vol. 51, pp. 247-60.

    Article  Google Scholar 

  29. E.R.I. Mahmouda, M. Takahashi, T. Shibayanagi, and K. Ikeuchi: Wear, 2010, vol. 268, pp. 1111-21.

    Article  Google Scholar 

  30. C.J. Lee, J.C. Huang, and P.J. Hsieh: Scripta Mater., 2006, vol. 54, pp. 1415-20.

    Article  CAS  Google Scholar 

  31. P. Asadi, G. Faraji, A. Masoumi, and M.K. Besharati Givi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2820–32.

    Article  Google Scholar 

  32. A. Yazdipoura, A. ShafieiMc, and K. Dehghani: Mater. Sci. Eng. A, 2009, vol. 527, pp. 192-97.

    Article  Google Scholar 

  33. X.Du. Hao and W.U. BaoLin: Sci. China Ser E-Tech. Sci., 2009, vol. 52, no. 6, pp. 1751-55.

    Article  Google Scholar 

  34. R.P. Dobriyal, B.K. Dhindaw, S. Muthukumaran, and S.K. Mukherjee: Mater. Sci. Eng. A, 2008, vol. 477, pp. 243-49.

    Article  Google Scholar 

  35. M.M. Avedesian and H. Baker: Magnesium and Magnesium Alloys ASM Specialty Handbook, 2nd ed., ASM International, Materials Park, OH, 1999.

    Google Scholar 

  36. L.Y. Wei, G.L. Dunlop, and H. Westengen: Mater. Sci. Technol., 1996, vol. 12, pp. 741-50.

    CAS  Google Scholar 

  37. M.J. Russell and H.R. Shercliff: Proc. First Int. Symposium on Friction Stir Welding, Thousand Oaks, CA, 1999.

  38. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi: Scripta Mater., 2006, vol. 55, pp. 1067-70.

    Article  CAS  Google Scholar 

  39. C.J. Lee, J.C. Huang, and P.J. Hsieh: Scripta Mater., 2006, vol. 54, pp. 1415-20.

    Article  CAS  Google Scholar 

  40. C.J Lee and J.C. Huang: Mater. Trans., 2006, vol. 47, p. 2773.

    Article  CAS  Google Scholar 

  41. C.I. Chang, X.U. Du, and J.C Huang: Scripta Mater., 2007, vol. 57, pp. 209-12.

    Article  CAS  Google Scholar 

  42. C.I. Chang, X.U. Du, and J.C Huang: Scripta Mater., 2008, vol. 59, pp. 356-59.

    Article  CAS  Google Scholar 

  43. X. Du. Hao and W.U. BaoLin: Sci. China Ser E-Tech. Sci., 2009, vol. 52, no. 6, pp. 1751-55.

    Article  Google Scholar 

  44. T.R. McNelley, S. Swaminathan, and J.Q. Su: Scripta Mater., 2008, vol. 58, pp. 349-54.

    Article  CAS  Google Scholar 

  45. J.Q. Su, T.W. Nelson, and C.J. Sterling: Mater. Sci. Eng. A, 2005, vol. 405, p. 277.

    Article  Google Scholar 

  46. S. Ganashanan, L.G. Hector Jr., and Z.K. Liu: Comp. Mater. Sci., 2010, vol. 50, pp. 301-07.

    Article  Google Scholar 

  47. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, UK, 1982, p. 44.

    Google Scholar 

  48. W.D. Callister: Material Science and Engineering—An Introduction, 6th ed., Wiley, New York, NY, 2004, p. 118.

    Google Scholar 

  49. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., Columbus, OH, 1988, p. 711.

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the help extended by Dr. David S. McPhail, Dr. S. Barbara and Mr. Richard J. Chater, Materials Department, Imperial College London, UK for TEM and FIB-SIMS analysis of the FSP specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh Arora.

Additional information

Manuscript submitted May 5, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, H.S., Singh, H. & Dhindaw, B.K. Some Observations on Microstructural Changes in a Mg-Based AE42 Alloy Subjected to Friction Stir Processing. Metall Mater Trans B 43, 92–108 (2012). https://doi.org/10.1007/s11663-011-9573-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9573-7

Keywords

Navigation