Skip to main content
Log in

Modeling Freckle Segregation with Mesh Adaptation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Modeling the formation of macroscopic segregation channels during directional solidification processes has important applications in the casting industry. Computations that consider thermosolutal convection involve different length scales ranging from the small solute boundary layer at the dendrite tips to the characteristic size of the casting. In general, numerical models of solidification in the presence of a developing mushy zone are computationally inefficient because of nonlinear transport in an anisotropic porous medium. In the current work, mesh adaptation with triangular finite elements is used in conjunction with an efficient fractional-step solver of the momentum equations to predict the occurrence of channel-type segregation defects or freckles. The triangulations are created dynamically using an unstructured grid generator and a refinement criterion that tracks the position of the channel segregates. The efficiency of mesh adaptation is illustrated with simulations showing channel formation and macrosegregation in directional solidification of a Pb–Sn alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.F. Giamei and B.H. Kear: Metall. Trans., 1970, vol. 1, pp. 2185-92.

    Article  CAS  Google Scholar 

  2. S.M. Copely, A.F. Giamei, S.M. Johnson, and M.F. Hornbecker: Metall. Trans., 1970, vol. 1, pp. 2193-2204.

    Article  Google Scholar 

  3. J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19, pp. 1861-71.

    CAS  Google Scholar 

  4. S.N. Tewari, R. Shah, and M.A. Chopra: Metall. Trans. A, 1993, vol. 24A, pp. 1661-9.

    CAS  Google Scholar 

  5. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Trans., 1987, vol. 30, pp. 2161-70.

    Article  CAS  Google Scholar 

  6. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Trans., 1987, vol. 30, pp. 2171-87.

    Article  CAS  Google Scholar 

  7. C. Beckermann and R. Viskanta: Physico. Chem. Hydro, 1988, vol. 10, no. 2, pp. 195-213.

    CAS  Google Scholar 

  8. S. Ganesan and D.R. Poirier: Metall. Trans. B, 1990, vol. 21, pp. 173-81.

    Article  CAS  Google Scholar 

  9. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan: Metall. Trans. B, 1991, vol. 22, no. 6, pp. 889-900.

    Article  CAS  Google Scholar 

  10. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Metall. Trans. B, 1991, vol. 22, pp. 847-59.

    Article  CAS  Google Scholar 

  11. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Num. Heat Trans. B, 1993, vol. 23, no. 4, pp. 461-81.

    Article  CAS  Google Scholar 

  12. H. Combeau and G. Lesoult: in Modelling of Casting, Welding and Advanced Solidification Processes IV, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, pp. 201–08.

  13. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Katiner: Int. J. Heat. Mass. Trans., 1997, vol. 28A, 1517-31.

    CAS  Google Scholar 

  14. S.D. Felicelli, J.C. Heinrich, and D.R. Poirier: Int. J. Numer. Meth. Fluid, 1998, vol. 27, pp. 207-27.

    Article  CAS  Google Scholar 

  15. C. Frueh, D.R. Poirier, and S.D. Felicelli: Mater. Sci. Eng. A, 2002, vol. 328, pp. 245-55.

    Article  Google Scholar 

  16. G. Amberg: Int. J. Heat Mass Trans., 1991, vol. 34, no. 1, pp. 217-27.

    Article  CAS  Google Scholar 

  17. D. Xu and Q. Li: Num. Heat Trans. A, 1991, vol. 20, pp. 181-201.

    Article  Google Scholar 

  18. D.G. Westra: Ph.D. Dissertation, The University of Arizona, Sierra Vista, AZ, 2003.

  19. J.C. Heinrich, U.K. Sajja, S.D. Felicelli, and D.G. Westra: Int. J. Numer. Meth. Fluids, 2008, vol. 57, pp. 1211-26.

    Article  CAS  Google Scholar 

  20. U.T. Kämpfer and M. Rappaz: Model. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 575-97.

    Article  Google Scholar 

  21. W. Liu, C. Xie, M. Bellet, and H. Combeau: Acta. Metall. Sin., 2009, vol. 22, pp. 233-40.

    Article  Google Scholar 

  22. D.L. Marcum and N.P. Weatherill: AIAA J., 1995, vol. 33, pp. 1619-25.

    Article  Google Scholar 

  23. D.L. Marcum and N.P. Weatherill: Comput. Meth. Appl. Mech. Eng., 1995, vol. 127, pp. 259-68.

    Article  Google Scholar 

  24. S. Ganesan, C.L. Chan, and D.R. Poirier: Mater. Sci. Eng. A, 1992, vol. 151, pp. 97-105.

    Article  Google Scholar 

  25. M.S. Bhat, D.R. Poirier, and J.C. Heinrich: Metall. Mater. Trans. B, 1995, vol. 26, pp. 1049-56.

    Article  CAS  Google Scholar 

  26. U.K. Sajja, S.D. Felicelli, and J.C. Heinrich: Int. J. Numer. Meth. Eng., 2011, in press.

  27. P.K. Sung, D.R. Poirier, and S.D. Felicelli: Int. J. Numer. Meth. Fluid, 2001, vol. 35, pp. 357-70.

    Article  CAS  Google Scholar 

  28. J. Guo and C. Beckermann: Num. Heat Trans. A, 2003, vol. 44, pp. 559-76.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation through grants CTS-0553570 and CBET-0931801. The support with the AFLR mesh generation software by Prof. David Marcum at Mississippi State University is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio D. Felicelli.

Additional information

Manuscript submitted May 8, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajja, U.K., Felicelli, S.D. Modeling Freckle Segregation with Mesh Adaptation. Metall Mater Trans B 42, 1118–1129 (2011). https://doi.org/10.1007/s11663-011-9565-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9565-7

Keywords

Navigation