Skip to main content
Log in

Development of Mathematical Model for Prediction and Optimization of Particle Size in Nanocrystalline CdS Thin Films Prepared by Sol-Gel Spin-Coating Method

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Nanocrystalline CdS thin films have been prepared by the sol-gel spin-coating method. The influence of spin-coating process parameters such as, thiourea concentration (U), annealing temperature (A), rotational speed (S), and annealing time (T), and so on, on the properties of the prepared films have been studied. The experiments have been carried out based on four factor-five-level central composite designs with the full replication technique, and mathematical models have been developed using regression technique. The central composite rotatable design has been used to minimize the number of experimental parameters. The analysis of variance technique is applied to check the validity of the developed models. The developed mathematical model can be used effectively to predict the particle size in CdS nanocrystalline thin films at 95 pct confidence level. The results have been verified by depositing the films using the same condition. An ultraviolet-visible optical spectroscopy study was carried out to determine the band gap of the CdS nanocrystalline thin films. The band gap has been observed to depend strongly on particle size, and it indicated a blue shift caused by quantum confinement effects. The high-resolution transmission electron microscopy analysis showed the grain size of the prepared CdS film to be 6 nm. The main and interaction effects of deposition parameters on the properties of CdS nanocrystalline thin films also have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Mahtab, J.P. Rogers, C.P. Singleton, and C.J. Muphy: J. Am. Chem. Soc., 1996, vol. 118, pp. 7028–32.

    Article  CAS  Google Scholar 

  2. M. Green and P.O. Brien: Chem. Commun., 1999, pp. 2235–41.

  3. O. Trujillo, R. Moss, K.D. Vuong, D.H. Lee, R. Noble, D. Finnigan, S. Orloff, E. Tenpas, C. Park, J. Fagan, and X.W. Wang: Thin Solid Films, 1996, vols. 290–291, pp. 13–17.

    Article  Google Scholar 

  4. C.M. Dai, L. Horng, W.F. Hsieh, Y.T. Shih, C.T. Tsai, and D.S. Chuu: J. Vac. Sci. Technol. A, 1992, vol. 10, pp. 484–88.

    Article  CAS  ADS  Google Scholar 

  5. J.-H. Lee: J. Electroceram., 2006, vol. 17, pp. 1103–80.

    Article  CAS  Google Scholar 

  6. B. Ullrich, D.M. Bagnall, H. Sakai, and Y. Segawa: J. Luminesc., 2000, vols. 87–89, pp. 1162–64.

    Article  Google Scholar 

  7. G. Perna, V. Capozzi, S. Pagliara, M. Ambrico, and D. Lojacono: Thin Solid Films, 2001, vol. 387, pp. 208–11.

    Article  CAS  ADS  Google Scholar 

  8. A. Chediak, Z. Luo, J. Seo, N. Cheung, L.P. Lee, and T.D. Sands: Sens. Actuators A, 2004, vol. 111, pp. 1–7.

    Article  Google Scholar 

  9. K.R. Murali, S. Kumaresan, and J.J. Prince: J. Mater. Sci: Mater. Electron., 2007, vol. 18, pp. 487–93.

    Article  CAS  Google Scholar 

  10. X.L. Tong, D.S. Jiang, W.B. Hu, Z.M. Liu, and M.Z. Luo: Appl. Phys. A, 2006, vol. 84, pp. 143–48.

    Article  CAS  ADS  Google Scholar 

  11. A.A. Alnajjar, M.F.A. Alias, R.A. Almatuk, and A.A.J. Al-Douri: Renew. Energ., 2009, vol. 34, pp. 2160–63.

    Article  CAS  Google Scholar 

  12. B. Pradhan, A.K. Sharma, and A.K. Ray: J. Cryst. Growth, 2007, vol. 304, pp. 388–92.

    Article  CAS  ADS  Google Scholar 

  13. P. Raji, C. Sanjeeviraja, and K. Ramachandran: Bull. Mater. Sci., 2005, vol. 28, pp. 233–38.

    Article  CAS  Google Scholar 

  14. Y.A. Kalandaragh, M.B. Muradov, R.K. Mammedov, and A. Kaodayari: J. Cryst. Growth, 2007, vol. 305, pp. 175–80.

    Article  ADS  Google Scholar 

  15. D. Patidar, R. Sharma, N. Jani, T.P. Sharma, and N.S. Saxena: Bull. Mater. Sci., 2006, vol. 29, pp. 21–24.

    Article  CAS  Google Scholar 

  16. D.C. Montgomery: Introduction to Statistical Quality Control, Wiley, New York, NY, 2001.

    Google Scholar 

  17. J. Antony: Int. J. Prod. Res., 2000, vol. 38, pp. 2607–18.

    Article  Google Scholar 

  18. S.R. Schmidt and R.G. Launsby: Understanding Industrial Designed Experiments, Air Academy Press, Colorado Springs, CO, 1992.

    Google Scholar 

  19. T. Kannan and N. Murugan: J. Mater. Process. Technol., 2006, vol. 176, pp. 230–39.

    Article  CAS  Google Scholar 

  20. K. Elangovan, V. Balasubramanian, and S. Babu: Mater. Designs, 2006, vol. 30, pp. 188–93.

    Article  Google Scholar 

  21. K.S. Ramaiah, A.K. Bhatnagar, R.D. Pilkinton, A.E. Hill, and R.D. Tomlinson: J. Mater. Sci., 2000, vol. 11, pp. 269–77.

    CAS  Google Scholar 

  22. B.K. Rai, H.D. Bist, R.S. Katiyar, M.T.S. Nair, P.K. Nair, A. Manivannan: J. Appl. Phys., 1997, vol. 82, pp. 1310–19.

    Article  CAS  ADS  Google Scholar 

  23. C.P. Poole Jr, and F.J. Owens: Introduction of Nanotechnology, Wiley, New York, NY, 2003, p. 66.

    Google Scholar 

  24. N.N. Parvathy, G.M. Pajonk, and A.V. Rao: J. Mater. Synth. Proc., 1999, vol. 7, pp. 221–28.

    Article  CAS  Google Scholar 

  25. P.K. Nair, O. Gomez DaZa, A. Arias-carbajal Readigos, J. Campos, M.T.S. Nair: Semicond. Sci. Technol., 2001, vol. 16, pp. 651–56.

    Article  CAS  ADS  Google Scholar 

  26. H. Metin and R. Esen: J. Cryst. Growth, 2003, vol. 258, pp. 141–48.

    Article  CAS  ADS  Google Scholar 

  27. S.M. Reda: Acta Mater., 2008, vol. 56, pp. 259–64.

    Article  CAS  Google Scholar 

  28. R.S. Yadav, P. Mishra, R. Mishra, M. Kumar, and A.C. Pandey: Ultrason. Sonochem., 2010, vol. 17, pp. 116–22.

    Article  CAS  PubMed  Google Scholar 

  29. M. Thambidurai, N. Murugan, N. Muthukumarasamy, S. Vasantha, R. Balasundaraprabhu, and S. Agilan: Chalcogenide Letters, 2009, vol. 6, pp. 171–79.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the University Grants Commission, India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thambidurai.

Additional information

Manuscript submitted April 15, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thambidurai, M., Muthukumarasamy, N., Murugan, N. et al. Development of Mathematical Model for Prediction and Optimization of Particle Size in Nanocrystalline CdS Thin Films Prepared by Sol-Gel Spin-Coating Method. Metall Mater Trans B 41, 1338–1345 (2010). https://doi.org/10.1007/s11663-010-9420-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9420-2

Keywords

Navigation