Skip to main content
Log in

Statistical Modeling of the Industrial Sodium Aluminate Solutions Decomposition Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article presents the results of the statistical modeling of industrial sodium aluminate solution decomposition as part of the Bayer alumina production process. The aim of this study was to define the correlation dependence of degree of the aluminate solution decomposition on the following parameters of technological processes: concentration of the Na2O (caustic), caustic ratio and crystallization ratio, starting temperature, final temperature, average diameter of crystallization seed, and duration of decomposition process. Multiple linear regression analysis (MLRA) and artificial neural networks (ANNs) were used as the tools for the mathematical analysis of the indicated problem. On the one hand, the attempt of process modeling, using MLRA, resulted in a linear model whose correlation coefficient was equal to R 2 = 0.731. On the other hand, ANNs enabled, to some extent, better process modeling, with a correlation coefficient equal to R 2 = 0.895. Both models obtained using MLRA and ANNs can be used for the efficient prediction of the degree of sodium aluminate solution decomposition, as the function of the input parameters, under industrial conditions of the Bayer alumina production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Habashi: Handbook of Extractive Metallurgy, vol. 1, Wiley, New York, NY, 1997.

    Google Scholar 

  2. F. Habashi: J. Mining Metall. B, 2009, vol. 45, no. 1, pp. 1–13.

    Article  CAS  Google Scholar 

  3. I. Seyssiecq, S. Veesler, R. Boistelle, and J.M. Lamerant: Chem. Eng. Sci., 1998, vol. 53, no. 12, pp. 2177–85.

    Article  CAS  Google Scholar 

  4. H. Li, J. Addai-Mensah, C.J. Thomas, and R.A. Gerson: J. Crystal Growth, 2005, vol. 279, pp. 508–20.

    Article  CAS  ADS  Google Scholar 

  5. I. Seyssiecq, S. Veesler, and R. Boistelle: J. Crystal Growth, 1996, vol. 169, pp. 124–28.

    Article  CAS  ADS  Google Scholar 

  6. D.S. Rossiter, P.D. Fawell, D. Ilievski, and G.M. Parkinson: J. Crystal Growth, 1998, vol. 191, pp. 525–36.

    Article  CAS  ADS  Google Scholar 

  7. J. Li, C.A. Prestidge, and J. Addai-Menach: J. Crystal Growth, 2000, vol. 219, pp. 451–64.

    Article  CAS  ADS  Google Scholar 

  8. H. Watling, J. Loh, and H. Gatter: Hydrometallurgy, 2000, vol. 55, pp. 275–88.

    Article  CAS  Google Scholar 

  9. H. Watling: Hydrometallurgy, 2000, vol. 55, pp. 289–309.

    Article  CAS  Google Scholar 

  10. Z. Wang, S. Bi, Y. Yang, and Z. Zuan: J. Crystal Growth, 2005, vol. 274, pp. 218–25.

    Article  CAS  ADS  Google Scholar 

  11. J. Zeng, Z. Yin, and Q. Chen: Hydrometallurgy, 1997, vol. 89, pp. 107–16.

    Article  Google Scholar 

  12. T. Machold, E. Macedi, D.W. Larid, P.M. May, and G.T. Hefter: Hydrometallurgy, 2009, vol. 99, pp. 51–57.

    Article  CAS  Google Scholar 

  13. B. Zhang, J. Li, Q. Chen, and G. Chen: Miner. Eng., 2009, vol. 22, pp. 853–58.

    Article  CAS  Google Scholar 

  14. B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das, C.R. Mishra, and B.S. Pani: Hydrometallurgy, 2007, vol. 88, pp. 121–26.

    Article  CAS  Google Scholar 

  15. I. Blagojević, D. Blečić, and R. Vasiljević: J. Crystal Growth, 1999, vol. 200, pp. 558–64.

    Article  ADS  Google Scholar 

  16. G.H. Chen, Q.Y. Chen, Z.L. Yin, and Z.M. Yin: Trans. Nonferr. Met. Soc. China, 2006, vol. 16, pp. 483–87.

    Article  CAS  Google Scholar 

  17. B. Dash, B.C. Tripathy, I.N. Bhattacharya, S.C. Das, C.R. Mishra, and B.K. Mishra: Hydrometallurgy, 2009, vol. 95, pp. 297–301.

    Article  CAS  Google Scholar 

  18. D. Panais and I. Paspaliaris: Erzmetall, 2003, vol. 56, no. 2, pp. 75–80.

    Google Scholar 

  19. S.J. Freij and G.M. Parkinson: Hydrometallurgy, 2005, vol. 78, pp. 246–55.

    Article  CAS  Google Scholar 

  20. S. Cao, Y. Zhang, and Y. Zhang: Hydrometallurgy, 2009, vol. 98, pp. 298–303.

    Article  CAS  Google Scholar 

  21. Ž. Živković, I. Mihajlović, and D. Nikolić: Serb. J. Manag., 2009, vol. 4, no. 2, pp. 137–49.

    Google Scholar 

  22. R.N. Moroney: J. Wind Eng. Ind. Aerod., 1998, vol. 77 & 78, pp. 543–53.

    Article  Google Scholar 

  23. H. Demuth and M. Beale: Neural Network Toolbox for Use with MATLAB, Handbook, The MathWorks Inc., Natick, MA, 2002.

  24. R.C. Eberhart and R.W. Dobbins: Neural Network PC Tools: A Practical Guide, Academic Press, New York, NY, 2002.

    Google Scholar 

  25. D. Liu, Z. Yuan, and S. Liao: Expert Syst. Appl., 2009, vol. 36, pp. 10397–400.

    Article  Google Scholar 

  26. H.S. Meradi, S. Bouhousche, and M. Lahreche: Proc. World Acad. Sci. Eng. Technol., 2006, vol. 17, pp. 319–23.

    Google Scholar 

Download references

Acknowledgment

The authors are indebted to Mr. R. Smiljanić from Alumina Factory Birač A.D., Zvornik, Bosnia and Herzegovina, who enabled the collection of the industrial data used in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Mihajlović.

Additional information

Manuscript submitted November 24, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Živković, Ž., Mihajlović, I., Djurić, I. et al. Statistical Modeling of the Industrial Sodium Aluminate Solutions Decomposition Process. Metall Mater Trans B 41, 1116–1122 (2010). https://doi.org/10.1007/s11663-010-9407-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9407-z

Keywords

Navigation