Skip to main content
Log in

A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A αβ :

Interfacial area density

a :

General activity

C μ :

Turbulence model constant

D :

Diffusion coefficient

D m :

Molecular diffusivity

d s :

Solid particle size

ds0 :

Seeding particle size

d p :

Particle size of the packed bed

h :

Henrian activity

F d :

Solid-liquid drag force

F c :

Interaction force between the phase and the coke bed

f Ti :

Activity coefficient of Ti in hot metal

G :

The mass flux

ΔG :

Free energy of reaction

H :

Enthalpy

K N, K TiC, K TiN :

Equilibrium constants

\( \dot{m} \), \( \dot{m}_{C} \):

Interphase mass transfer rate of total mass and of each component

n s :

The particle number density of solid particle phase

n s0 :

Seeding particle number density

\( P_{{{\text{N}}_{2} }} \) :

Partial pressure of nitrogen

p :

Pressure

\( Pe \equiv {\frac{{Ud_{p} }}{D}} \) :

Peclet number

Q d :

Interphase heat transfer rate

R :

Universal gas constant

Re:

Reynolds number

r :

Phase volume fraction

r c :

Radius of atom

\( Sc \equiv {\mu \mathord{\left/ {\vphantom {\mu {\rho D}}} \right. \kern-\nulldelimiterspace} {\rho D}} \) :

Schmidt number

Sh:

Sherwood number

S n :

A source term in the number density equation

T :

Temperature

U :

Superficial velocity

U s :

Suspended solid superficial velocity

u :

True velocity vector

Y :

Mass fraction of a component

α s :

Suspended solid volume fraction in the void

ε :

Packed bed porosity

κ :

Boltzmann’s constant (1.3807 × 10–23 J K–1)

ρ :

Density

μ :

General viscosity of a phase or laminar viscosity of liquid

μ s :

Solid shear viscosity

μ t :

Turbulent viscosity

λ :

Thermal conductivity

References

  1. J. Bobek, D. Huang, P. Chaubal, and W. Carter: AISTech 2004 Proc., vol. 1, pp. 23–34.

  2. Y. Zhang, R. Deshpande, D. Huang, P. Chaubal, and C.Q. Zhou: Int. J. Heat Mass. Tran., 2008, vol. 51, pp. 186-97.

    Article  MATH  CAS  Google Scholar 

  3. K. Narita, M. Maekawa, T. Onoye, Y. Satoh, and M. Miyamoto: Trans. ISIJ, 1977, vol. 17, pp. 459-68.

    CAS  Google Scholar 

  4. M. Sumito, N. Tsuchiya, K. Okabe, and K. Sanbongi: Trans. ISIJ, 1981, vol. 21, pp. 414-21.

    Google Scholar 

  5. Y. Li and R.J. Fruehan: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1203-05.

    Article  CAS  ADS  Google Scholar 

  6. Y. Li, Y.Q. Li, and R.J. Fruehan: ISIJ Int., 2001, vol. 41, pp. 1417-22.

    Article  CAS  Google Scholar 

  7. T. Okada, K. Kuwano, K. Shimomura, R. Hori, H. Miyatani, Y. Ochiai, and K. Uemura: Ironmaking Conf. Proc., 1991, pp. 307–12.

  8. F. Fujihara, J. Tardin, J. Oliveira, J. Novaes, D. Ruy, and J. Seabra: Rev. Metall.-Paris , 2004, vol. 101, pp. 261-67.

    Article  Google Scholar 

  9. B. Korthas, J. Hunger, V. Pschebezin, J. Adam, G. Harp, S. Kallio, R. Hurme, J.-O. Wikström, P. Hahlin, S. Wiedner, L. Di Sante, and I. Gelli: Hearth Protection in Blast Furnace Operation by Injection of TiO 2 Materials, Technical Steel Research Series, European Commission, Luxembourg, 2007.

  10. I.F. Kurunov and V.N. Loginov: Metallurgist, 2006, vol. 50, pp. 605-13.

    Article  CAS  Google Scholar 

  11. I.F. Kurunov and V.N. Loginov: Metallurgist, 2007, vol. 50, pp. 7-15.

    Article  Google Scholar 

  12. D. Bergsma and R.J. Fruehan: 60th Ironmaking Conf. Proc., ISS-AIME, Warrendale, PA, 2001, pp. 297-312.

    Google Scholar 

  13. ANSYS Inc., ANSYS CFX-11.0-User Online Manual, 2007.

  14. X.F. Dong, A.B. Yu, J. Yagi, and P. Zulli: ISIJ Int., 2007, vol. 47, pp. 1553-70.

    Article  CAS  Google Scholar 

  15. B.Y. Guo, D. Maldonado, P. Zulli, and A.B. Yu: ISIJ Int., 2008, vol. 48, pp. 1676-85.

    Article  CAS  Google Scholar 

  16. B. Ozturk and R.J. Fruehan: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 879-84.

    CAS  ADS  Google Scholar 

  17. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, Upper Saddle River, NJ, 1993.

    Google Scholar 

  18. A. Miller and D. Gidaspow: AIChE J., 1992, vol. 38, pp. 1811-15.

    Article  Google Scholar 

  19. H. Nogami and J. Yagi: ISIJ Int., 2004, vol. 44, pp. 1826-34.

    Article  CAS  Google Scholar 

  20. D. Gidaspow: Multiphase Flow and Fluidisation, Academic Press, New York, 1994.

    Google Scholar 

  21. S. Li, Y. Ding, D. Wen, and Y. He: Chem. Eng. Sci., 2006, vol. 61, pp. 1922-31.

    Article  CAS  Google Scholar 

  22. B.Y. Guo, A.B. Yu, B. Wright, and P. Zulli: Chem. Eng. Tech., 2006, vol. 29, pp. 596-603.

    Article  CAS  Google Scholar 

  23. F. Kuwahara and A. Nakayama: J. Heat Tran., 1999, vol. 121, pp. 160-63.

    Article  CAS  Google Scholar 

  24. D.J. Gunn: Chem. Eng. Sci., 1987, vol. 42, pp. 363-73.

    Article  CAS  Google Scholar 

  25. M. Kosake and S. Minowa: Trans. ISIJ, 1968, vol. 8, pp. 392-400.

    Google Scholar 

  26. P.R. Austin: Ph.D. Dissertation, Tohoku University, Sendai, Japan, 1997.

  27. D.T. Morelli: Phys. Rev. B., 1991, vol. 44, pp. 5453-58.

    Article  CAS  ADS  Google Scholar 

  28. J.F. Shackelford and W. Alexander: Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  29. J.R. Post, T. Peeters, Y. Yang, and M.A. Reuter: Proc. 3rd Int. Conf. CFD in Mineral and Process Industries, CSIRO, Melbourne, Australia, 2003, pp. 433-40.

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Australian Research Council and BlueScope Steel Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Bing Yu.

Additional information

Manuscript submitted October 8, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, BY., Zulli, P., Maldonado, D. et al. A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth. Metall Mater Trans B 41, 876–885 (2010). https://doi.org/10.1007/s11663-010-9384-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9384-2

Keywords

Navigation