Metallurgical and Materials Transactions B

, Volume 41, Issue 4, pp 841–856 | Cite as

Synthesis of FeCu Nanopowder by Levitational Gas Condensation Process

  • Duraisamy Sivaprahasam
  • A. M. Sriramamurthy
  • M. Vijayakumar
  • G. Sundararajan
  • Kamanio Chattopadhyay
Article

Abstract

Condensation from the vapor state is an important technique for the preparation of nanopowders. Levitational gas condensation is one such technique that has a unique ability of attaining steady state. Here, we present the results of applying this technique to an iron-copper alloy (96Fe-4Cu). A qualitative model of the process is proposed to understand the process and the characteristics of resultant powder. A phase diagram of the alloy system in the liquid–vapor region was calculated to help understand the course of condensation, especially partitioning and coring during processing. The phase diagram could not explain coring in view of the simultaneous occurrence of solidification and the fast homogenization through diffusion in the nanoparticles; however, it could predict the very low levels of copper observed in the levitated drop. The enrichment of copper observed near the surface of the powder was considered to be a manifestation of the lower surface energy of copper compared with that of iron. Heat transfer calculations indicated that most condensed particles can undergo solidification even when they are still in the proximity of the levitated drop. It helped us to predict the temperature and the cooling rate of the powder particles as they move away from the levitated drop. The particles formed by the process seem to be single domain, single crystals that are magnetic in nature. They, thus, can agglomerate by forming a chain-like structure, which manifests as a three-dimensional network enclosing a large unoccupied space, as noticed in scanning electron microscopy and transmission electron microscopy studies. This also explains the observed low packing density of the nanopowders.

References

  1. 1.
    H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223-315.CrossRefGoogle Scholar
  2. 2.
    C. Suryanarayana and C.C. Koch: Hyperfine Interact., 2000, vol. 230, pp. 5-44.CrossRefADSGoogle Scholar
  3. 3.
    J.F. Löffler, H.B. Braun, W. Wagner, G. Kostorz, and A. Wiedenmann: Mater. Sci. Eng. A, 2001, vol. 304-6, pp. 1050-54.Google Scholar
  4. 4.
    W.A. Jesser, R.Z. Shneck, and W.W. Gille: Phys. Rev. B, 2004, vol. 69 (144121).Google Scholar
  5. 5.
    C.E. Carlton and P.J. Ferreira: Acta Mater., 2007, vol. 55, pp. 3749-56.CrossRefGoogle Scholar
  6. 6.
    Y. Champion, S. Guerin Mailly, J.L. Bonnentien, and P. Langlois: Scripta Mater. 2001, vol. 44, pp. 1609-13.CrossRefGoogle Scholar
  7. 7.
    J. Rawers: Nanostructured Materials, 1999, vol. 11, pp. 513-22.CrossRefGoogle Scholar
  8. 8.
    R.K. Sadangi, B.H. Kear, and L.E. Macandlish: Powder Metall., 1994, vol. 37, pp. 277-82.Google Scholar
  9. 9.
    H. Eifert, D. Kupp, and B. Gunther: Powder Metal., 2000, vol. 43, pp. 310-13.Google Scholar
  10. 10.
    J.R. Groza and R.J. Dowding: Nanostruct. Mater., 1996, vol. 7, pp. 749-68.CrossRefGoogle Scholar
  11. 11.
    Y. Champion, F. Bernard, N.G. Millot, and P. Perriat: Mater. Sci. Eng. A, 2003, vol. 360, pp. 258-63.CrossRefGoogle Scholar
  12. 12.
    P.G. Sanders, G.E. Fougere, L.J. Thompson, J.A. Eastman, and J.R. Weertman: Nanostruct. Mater., 1997, vol. 8, pp. 243-52.CrossRefGoogle Scholar
  13. 13.
    X.J. Wu, L.G. Du, H.F. Zhang, J.F. Liu, Y.S. Zhou, Z.Q. Li, l.V. Xionga, and Y.L. Bai: Nanostruct. Mater., 1999, vol. 12, pp. 221-24.CrossRefGoogle Scholar
  14. 14.
    A.N. Jigatch, I.O. Leipunskii, M.L. Kuskov, N.I. Stoenko, and V.B. Storozhev: Instruments Experimental Techniques, 2000, vol. 43, pp. 839-45.CrossRefGoogle Scholar
  15. 15.
    S. Han, C.K. Rhee, M.K. Lee, and Y.R. Uhm: IEEE Trans. Magnet., 2006, vol. 42, pp. 3779-81.CrossRefADSGoogle Scholar
  16. 16.
    Y.R. Uhm, W.W. Kim, and C.K. Rhee: Phys. Stat. Sol., 2004, vol. 201, pp. 1934-37.CrossRefADSGoogle Scholar
  17. 17.
    C.M. Li, H. Lei, Y.J. Tang, J.S. Luo, W. Liu, and Z.M. Chen: Nanotechnology, 2004, vol. 15, pp. 1866-69.CrossRefADSGoogle Scholar
  18. 18.
    K. Williamson and W.H. Hall: Acta Metall. 1953, vol. 1, pp. 22-31.CrossRefGoogle Scholar
  19. 19.
    H. Hahn: Nanostruct. Mater., 1997, vol. 9, pp. 3-12.CrossRefGoogle Scholar
  20. 20.
    L. Signorini, L. Pasquini, L. Savini, R. Carboni, F. Boscherini, E. Bonetti, A. Giglia, M. Pedio, N. Mahne, and S. Nannarone: Phys. Rev. B, 2003, vol. 68 (195423).Google Scholar
  21. 21.
    E.F. Kneller: J Appl. Phys., 1964, vol. 35, pp. 2210-11.CrossRefADSGoogle Scholar
  22. 22.
    H. Karlsson, L. Nyborg, and S. Berg: Powder Metall., 2005, vol. 48, pp 51-58.CrossRefGoogle Scholar
  23. 23.
    M. Vijayakumar, A.M. Sriramamurthy, and S.V.N. Naidu: Calphad, 1988, vol. 12, pp. 177-84.CrossRefGoogle Scholar
  24. 24.
    S. Mukherjee and J.L. Moran Lopez: Surf. Sci., 1987, vol. 189–90, pp. 1135-42.CrossRefGoogle Scholar
  25. 25.
    B.C. Allen: Liquid Metals Chemistry and Physics, S.Z. Beer, ed. Dekker, New York, NY, 1972.Google Scholar
  26. 26.
    D.L. Bourell and W.A. Kaysser, Metall. Mater. Trans. A, 1994, vol. 25, pp. 677-85.CrossRefGoogle Scholar
  27. 27.
    Y. Sakka, T. Uchikoshi, and E. Ozawa: J Mater. Sci., 1993, vol. 28 pp. 203-17.CrossRefADSGoogle Scholar
  28. 28.
    J.H. Liao, K.I. Chen, L.N. Xu, C.W. Ge, J. Wang, L. Huang, and N. Gu: Appl. Phys. A, 2003, vol. 76, pp. 541-43.CrossRefADSGoogle Scholar
  29. 29.
    K. Yubuta, T. Sato, A. Nomura, K. Haga, and T. Shishido: J. Alloys Comp. 2007, vol. 436, pp. 396-99.CrossRefGoogle Scholar
  30. 30.
    Z. Tang and N.A. Kotov: Adv. Mater., 2005, vol.17, pp. 951-62.CrossRefGoogle Scholar
  31. 31.
    H.B. Wahlin and H.W. Knop, Jr.: Phys. Rev., 1948, vol. 74, pp. 687–89.CrossRefADSGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2010

Authors and Affiliations

  • Duraisamy Sivaprahasam
    • 1
  • A. M. Sriramamurthy
    • 1
  • M. Vijayakumar
    • 2
  • G. Sundararajan
    • 1
  • Kamanio Chattopadhyay
    • 3
  1. 1.ARC-InternationalHyderabadIndia
  2. 2.Defence Metallurgical Research LaboratoryHyderabadIndia
  3. 3.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations