Skip to main content

Advertisement

Log in

Effect of Carbon Aggregates on the Properties of Carbon Refractories for a Blast Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of carbon aggregates on the carbon refractory properties for a blast furnace was studied with X-ray diffraction (XRD), scanning electron microscopy (SEM), an energy-dispersive X-ray, mercury porosimetry, a resistivity instrument, and a laser thermal conductivity meter. The results showed that the microporous structure of a sample was determined by the amount of β-SiC whiskers. The thermal conductivity was controlled by the thermal conductivity of the corresponding carbon aggregate, and the alkali and molten-iron attack was decided mainly by the pore and the graphitization degree of aggregate, respectively. For samples using calcined anthracites as aggregates, the microporous structure became worse, the thermal conductivity increased, and the molten-iron as well as the alkali attack became more severe with an increase in the anthracite calcining temperature. For all samples, microcrystalline graphite possessed the best microporous structure and the least alkali and molten-iron attack, whereas the graphite electrode scraps had the highest thermal conductivity and the most severe alkali and molten-iron attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Tamura, S. Fujihara, and M. Ikeda: Am. Ceram. Soc. Bull., 1986, vol. 65, pp. 1065-72.

    CAS  Google Scholar 

  2. F. Vernilli Jr., S.M. Justus, and S.N. Silva: ISIJ Int., 2005, vol. 45, pp. 1871-77.

    Article  CAS  Google Scholar 

  3. S.M. Justus, S.S. Cava, and L.E. Bastos Soledade: Refractoreis Manual, Interceram, Dusseldorf, Germany, 2003, pp. 60–65.

    Google Scholar 

  4. D.A. Campbell: Steel Times, 1993, vol. 221, pp. 505-06.

    Google Scholar 

  5. M. Nitta and H. Nakamura: Proc. UNITECR’05 Cong., 2005, pp. 377–80.

  6. M. Miwa and T. Yamamoto: Taikabatsu Overseas, 1982, vol. 2, pp. 42-50.

    CAS  Google Scholar 

  7. J.P. Mchenry and A.J. Dzermeiko: Steel Times, 1996, vol. 224, pp. 400-04.

    Google Scholar 

  8. X. Zhan and M. Song: Naihuo Cailiao, 1998, vol. 32, pp. 15-17.

    CAS  Google Scholar 

  9. L.Q. Ma, Z.L. Xiang, and G.L. Zhang: Carbon Tech., 2001, pp. 6–7.

  10. W. Chen, Q.W. Chen, Z. Li, and Z.P. Pang: Ironmaking, 2001, vol. 20, pp. 27-29.

    Google Scholar 

  11. Y.M. Ren: Clean Coal Tech., 2004, vol. 10, pp. 8-10.

    Google Scholar 

  12. L.Q. Ma: Carbon Tech., 2001, vol. 6, pp. 20-22.

    Google Scholar 

  13. G.L. Zhang, L.Q. Ma, L.Z. Xiang, and J.P. Zhang: Carbon Tech., 2003, pp. 43–47.

  14. L.Q. Ma and L.Z. Xiang: Carbon Tech., 2004, vol. 23, pp. 40-43.

    CAS  Google Scholar 

  15. D. Bandyopadhyay, S.D. Singh, D. Sanyal, K.K. Singh, and K.N. Singh: Chem. Eng. J., 2003, vol. 94, pp. 79-92.

    Article  CAS  Google Scholar 

  16. T.C. Sheau, S. Richard, S. Haiping, and S. Veena: ISIJ Int., 2006, vol. 46, pp. 652-59.

    Article  Google Scholar 

  17. M.J. Zou and M.S. Song: Iron Steel, 1996, vol. 31, pp. 70-74.

    CAS  Google Scholar 

  18. Y.W. Li, X.L. Chen, Y.B. Li, S.L. Jin, S. Ge, L. Zhao, S.J. Li: Naihuo Cailiao, 2008, vol. 42, pp. 401-08.

    CAS  Google Scholar 

  19. X.L. Chen, Y.W. Li, Y.B. Li, S.L. Jin, S. Ge, L. Zhao, S.J. Li: J. Wuhan University of Sci. and Technol., 2009, vol. 32, pp.154-59.

    CAS  Google Scholar 

  20. X.L. Chen, Y.W. Li, Y.B. Li, S.L. Jin, L. Zhao, S. Ge: Metall. Mater. Trans. A, 2009, vol. 40A, pp.1675-83.

    Article  CAS  ADS  Google Scholar 

  21. S. Zhang, N.J. Marriott, and W.E. Lee: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 1037-47.

    Article  CAS  Google Scholar 

  22. M.N. Khezrabadi, J. Javadpour, H.R. Rezaie, and R. Naghizadeh: J. Mater. Sci., 2006, vol. 41, pp. 3027-32.

    Article  CAS  ADS  Google Scholar 

  23. Y.W. Li, C.G. Aneziris, X.X. Yi, S.L. Jin, and N. Li: Refractories Manual, Interceram, Dusseldorf, Germany, 2005, pp. 20-23.

    Google Scholar 

  24. S.A. Podkopaev: Refractories and Industrial Ceramics, New York, NY, Springer, 2004, pp. 235-38.

    Google Scholar 

  25. M.L. Allitt, A.J. Whittaker, D.G. Onn, and K.G. Ewsuk: Int. J. Thermophys., 1989, vol. 10, pp. 1053-62.

    Article  CAS  Google Scholar 

  26. R.E. Franklin: Proc. R. Soc., 1951, vol. 209, pp. 196-218.

    Article  CAS  ADS  Google Scholar 

  27. A. Oberlin and G. Terriere: Carbon, 1975, vol. 13, pp. 367-76.

    Article  CAS  Google Scholar 

  28. N. Kiichi, O. Toshiio, S. Yoshitomo, M. Manabu, T. Kazuhiko, K. Shigeo, S. Tadashi, and F. Sho: Trans., ISIJ, 1981, vol. 21, pp. 839-45.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the New Century Excellent Talents in University (NCET-06-0676) for providing the financial support for this research. The authors also would like to thank the Fangda Carbon Co., Ltd. for the support of carbon materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawei Li.

Additional information

Manuscript Submitted June 3, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Li, Y., Li, Y. et al. Effect of Carbon Aggregates on the Properties of Carbon Refractories for a Blast Furnace. Metall Mater Trans B 41, 420–429 (2010). https://doi.org/10.1007/s11663-009-9336-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9336-x

Keywords

Navigation