Skip to main content
Log in

Secondary Cooling in the Direct-Chill Casting of Magnesium Alloy AZ31

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Secondary cooling information is critical when modeling the direct-chill (DC) casting process of magnesium alloys. However, accurate data for the heat flux in the secondary cooling zone are scarce, and most reported research is concerned with the DC casting of aluminum alloys. Cooling experiments that simulated the secondary cooling of magnesium AZ31 were conducted in order to observe the influence of various parameters on the different boiling-water heat-transfer phenomena. The heat flux in each boiling regime was quantified as a function of the cooling-water flow rate, water temperature, and initial sample temperature. Equations developed from the cooling experiments could be combined to build “idealized” boiling curves for a given set of DC casting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C f :

coefficient in Rohsenow’s NPB model (—)

C p :

specific heat (J kg−1 K−1)

D :

billet diameter (m)

d IZ :

distance from water-jet IZ (mm)

Fo:

Fourier number (—)

g :

gravitational acceleration (m s−2)

h :

heat-transfer coefficient (W m−2 K−1)

i fg :

latent heat of evaporation (J kg−1)

k :

thermal conductivity (W m−1 K−1)

Q :

volumetric cooling-water flow rate (m3 s−1)

Q′:

volumetric cooling-water flow rate per unit of perimeter (L min−1 m−1)

r :

exponent in Rohsenow’s NPB model (—)

T 0 :

initial temperature (°C)

T f :

water bulk temperature (°C)

T LPt :

Leidenfrost point temperature (°C)

T ONB :

onset of NB temperature (°C)

T s :

surface temperature (°C)

T sat :

water saturation temperature (°C)

T wet :

rewetting temperature (°C)

t :

time (s)

v c :

sample moving speed (mm s−1)

v f :

water-jet velocity (m s−1)

x :

sample thickness dimension (m)

z :

sample height dimension (m)

Δt :

time-step length (s)

ε th :

thermal effusivity (J m−2 K−1 s−0.5)

Φ:

heat flux (W m−2)

μ f :

water viscosity (kg m−1 s−1)

θ f :

water-jet-impingement angle (deg)

ρ :

density (kg m−3)

σ fg :

surface tension at the water/steam interface (N m−1)

References

  1. P. Baker: Light Met. (Métaux Légers), 1997, pp. 355–67.

  2. H. Hao, D.M. Maijer, M.A. Wells, S.L. Cockcroft, D. Sediako, and S. Hibbins: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3842–54.

    Google Scholar 

  3. J.F. Grandfield, A. Hoadley, and S. Instone: Light Met., 1997, pp. 691–99.

  4. J. Sengupta, S.L. Cockcroft, D.M. Maijer, M.A. Wells, and A. Larouche: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 532–39.

    Google Scholar 

  5. J. Sengupta, S.L. Cockcroft, D.M. Maijer, M.A. Wells, and A. Larouche: J. Light Met., 2002, vol. 2, pp. 137–48.

    Article  Google Scholar 

  6. W. Roth: Aluminium, 1943, pp. 283–91.

  7. H. Klein: Giesserei, 1953, vol. 10, pp. 441–54.

    Google Scholar 

  8. R. Siegel: Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 1421–30.

    Article  CAS  Google Scholar 

  9. D.J.P. Adenis, K.H. Coats, and D.V. Ragone: J. Inst. Met., 1962–1963, vol. 91, pp. 395–403.

  10. D.A. Peel and A.E. Pengelly: Mathematical Models in Metallurgical Process Development, Iron and Steel Institute, 1969, pp. 186–96.

  11. D.C. Weckman, R.J. Pick, and P. Niessen: Z. Metallkd., 1979, vol. 70 (11), pp. 750–57.

    Google Scholar 

  12. D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13B, pp. 593–602.

    Article  ADS  CAS  Google Scholar 

  13. J. Du, B.S.J. Kang, K.M. Chang, and J. Harris: Light Met., 1998, pp. 1025–30.

  14. G.P. Grealy, J.L. Davis, E.K. Jensen, P.A. Tøndel, and J. Moritz: Light Met., 2001, pp. 813–21.

  15. J.G. Collier and J.R. Thome: Convective Boiling and Condensation, 4th ed., Oxford University Press, Oxford, United Kingdom, 1996, pp. 148–69.

    Google Scholar 

  16. S.G. Hibbins: Light Met. (Métaux Légers), 1998, pp. 265–80.

  17. Q.C. Le, S.J. Guo, Z.H. Zhao, J.Z. Cui, and X.J. Zhang: J. Mater. Process. Technol., 2007, vol. 183, pp. 194–201.

    Article  CAS  Google Scholar 

  18. H. Yu: Light Met., 1985, pp. 1331–47.

  19. J. Langlais, T. Bourgeois, Y. Caron, G. Béland, and D. Bernard: Light Met., 1995, pp. 979–86.

  20. E.K. Jensen, S. Johansen, T. Bergstrøm, and J.A. Bakken: Light Met., 1986, pp. 891–96.

  21. J.A. Bakken and T. Bergstrøm: Light Met., 1986, pp. 883–89.

  22. E.D. Tarapore: Light Met., 1989, pp. 875–80.

  23. J.B. Wiskel and S.L. Cockcroft: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 119–27.

    Article  CAS  Google Scholar 

  24. J.B. Wiskel and S.L. Cockcroft: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 129–37.

    Article  CAS  Google Scholar 

  25. K. Kuwana, S. Viswanathan, J.A. Clark, A. Sabau, M.I. Hassan, K. Saito, and S. Das: Light Met., 2005, pp. 989–93.

  26. H. Kraushaar, R. Jeschar, V. Heidt, E.K. Jensen, and W. Schneider: Light Met., 1995, pp. 1055–59.

  27. L. Maenner, B. Magnin, and Y. Caratini: Light Met., 1997, pp. 701–07.

  28. A. Larouche, Y. Caron, and D. Kocaefe: Light Met., 1998, pp. 1059–64.

  29. I.J. Opstelten and J.M. Rabenberg: Light Met., 1999, pp. 729–35.

  30. L.I. Kiss, T. Meenken, A. Charette, Y. Lefebvre, and R. Lévesque: Light Met., 2002, pp. 981–85.

  31. M.A. Wells, D. Li, and S.L. Cockcroft: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 929–39.

    Article  CAS  Google Scholar 

  32. H. Yu: Light Met., 2005, pp. 983–87.

  33. E. Caron, M.A. Wells, and D. Li: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 475–83.

    Article  CAS  Google Scholar 

  34. G.A. Franco, E. Caron, and M.A. Wells: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 949–56.

    Article  ADS  CAS  Google Scholar 

  35. J.V. Beck, B. Blackwell, and C.R. St. Clair, Jr.: Inverse Heat Conduction: Ill-Posed Problems, John Wiley & Sons, Hoboken, NJ, 1985, pp. 108–61.

    MATH  Google Scholar 

  36. E. Caron and M.A. Wells: Proc. 10th Int. Conf. Aluminum Alloys, Vancouver, BC, Canada, 2006.

  37. E. Caron and M.A. Wells: Aluminium Cast House Technol. 2007—Proc. 10th Australasian Conf. Exhib., Sydney, NSW, Australia, 2007.

  38. J. Filipovic, F.P. Incropera, and R. Viskanta: Exp. Heat Transfer, 1995, vol. 8, pp. 257–70.

    CAS  Google Scholar 

  39. R.I. Vachon, G.E. Tanger, D.L. Davis, and G.H. Nix: J. Heat Transfer, 1968, pp. 239–47.

  40. D. Li, M.A. Wells, S.L. Cockcroft, and E. Caron: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 901–10.

    Article  ADS  CAS  Google Scholar 

  41. M. Bamberger and B. Prinz: Mater. Sci. Technol., 1986, vol. 2, pp. 410–15.

    CAS  Google Scholar 

  42. E. Caron and M.A. Wells: Aluminium Alloys: Their Physical and Mechanical Properties—Proc. 11th Int. Conf. Aluminum Alloys, Aachen, Germany, 2008.

  43. R. Jeschar, U. Reiners, and R. Scholz: Steelmaking Proc., 1986, vol. 69, pp. 511–21.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Caron.

Additional information

Manuscript submitted November 5, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, E., Wells, M. Secondary Cooling in the Direct-Chill Casting of Magnesium Alloy AZ31. Metall Mater Trans B 40, 585–595 (2009). https://doi.org/10.1007/s11663-009-9254-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9254-y

Keywords

Navigation