Skip to main content
Log in

Electromagnetic Brake Effects on the Funnel Shape Mold of a Thin Slab Caster Based on a New Type Magnet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present work, a new type of magnet specially designed for the thin slab casting funnel shape mold is developed. The unique feature of the new type of magnet lies in the fact that, the inner surfaces of the new magnet facing the mold are irregular to fit the complex funnel shape, while the inner surfaces of the convential magnet are planar. Magnetic fields produced by both the new type and the conventional magnets are computed under the same number of ampere turns for comparison. Keeping the position of the magnet relative to the mold fixed, numerical simulations of the influence of the new and conventional type magnets on the flow field in the mold are made. The commercial software FLUENT is used to predict the behavior of electrically conducting fluid flow under the influence of static magnetic fields. For the computation of magnetic fields, the finite element method (FEM) is adopted, while for fluid flow, the finite volume method (FVM) based on structured body fitted coordinate grids is used. The results show that the new type of magnet can produce larger magnetic flux density in the mold region than the conventional one does with the same current intensity. For the funnel shape mold, the electromagnetic brake (EMBr) due to the new magnet can provide a more uniform downstream velocity profile than that due to the conventional magnet, and almost 40 pct reduction in ampere turns; this fact implies that a lot of electrical energy could be saved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B :

magnetic flux density (T)

C1, C2, C μ :

turbulence model constants

E :

electric field intensity (Vm−1)

F em :

Lorentz force (Nm−3)

J :

current density (Am−2)

k :

turbulent kinetic energy (m2 s−2)

L :

characteristic length (m)

p :

pressure (Pa)

Re :

Reynolds number

v :

velocity (ms−1)

V :

velocity vector

x :

coordinate (m)

ε :

turbulence dissipation rate (m2 s−3)

κ :

von Karman constant

μ :

dynamic viscosity (kgm−1 s−1)

ρ :

density (kgm−3)

σ k , σ ε :

turbulence model constants

φ :

electric potential (Vm−1)

σ :

electromagnetic conductivity (Sm−1)

eff:

effective

i, j :

component index

inlet:

value at inlet entry

l :

laminar

t :

turbulent

References

  1. Y.S. Hwang, P.R. Cha, H.S. Nam, K.H. Moon, and J.K. Yoon: ISIJ Int., 1997, vol. 37 (7), pp. 659–67.

    Article  CAS  Google Scholar 

  2. H. Tozawa, H. Kitaoka, K.I. Sorimachi, H. Ishizuka, M. Ohnishi, and S. Kakihara: Proc. 6th Int. Iron and Steel Congr., ISIJ, Tokyo, 1990, pp. 438–45.

  3. Z.D. Qian, Y.L. Wu, B.W. Li, and J.C. He: ISIJ Int., 2002, vol. 42 (11), pp. 1259–65.

    Article  CAS  Google Scholar 

  4. D.S. Kim, W.S. Kim, and K.H. Cho: ISIJ Int., 2000, vol. 40 (7), pp. 670–76.

    Article  CAS  Google Scholar 

  5. T. Honeyands and J. Herbertson: Steel Res., 1995, vol. 66 (7), pp. 287–93.

    CAS  Google Scholar 

  6. B.W. Li, X.Y. Tian, E.G. Wang, and J.C. He: Acta Metall. Sinica (Eng. Lett.), 2007, vol. 20 (3), pp. 15–26.

    Article  MATH  Google Scholar 

  7. H. Nam, H.S. Park, and J.K. Yoon: ISIJ Int., 2000, vol. 40 (9), pp. 886–92.

    Article  CAS  Google Scholar 

  8. H.S. Park, H. Nam, and J.K. Yoon: ISIJ Int., 2001, vol. 41 (9), pp. 974–80.

    Article  CAS  Google Scholar 

  9. Z.D. Qian, B.W. Li, G.L. Jia, and J.C. He: ISIJ Int., 2001, vol. 41 (7), pp. 683–88.

    Article  CAS  Google Scholar 

  10. B.K. Li and F. Tsukihashi: ISIJ Int., 2006, vol. 46 (12), pp. 1833–38.

    Article  CAS  Google Scholar 

  11. B.G. Thomas, Q. Yuan, and S. Sivaramakrishnan, T.B. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41 (10), pp. 1262–71.

    Article  CAS  Google Scholar 

  12. Z.D. Qian and Y.L. Wu: ISIJ Int., 2004, vol. 44 (1), pp. 100–07.

    Article  CAS  Google Scholar 

  13. R. Hirayama, K Fujisaki, and T. Yamada: IEEE Trans. Magn., 2004, vol. 40 (4), pp. 2095–97.

    Article  ADS  Google Scholar 

  14. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–14.

    Article  Google Scholar 

  15. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1973, vol. 16, pp. 1119–30.

    Article  Google Scholar 

  16. C.K.G. Lam and K. Bremhorst: J. Fluid Eng., 1981, vol. 103, pp. 456–60.

    Article  Google Scholar 

  17. M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie: Numer. Heat Transfer, 1995, vol. 28A, pp. 279–99.

    Article  ADS  Google Scholar 

  18. S.H. Seyedein and M. Hasan: Int. J. Heat Mass Transfer, 1997, vol. 40 (18), pp. 4405–23.

    Article  CAS  Google Scholar 

  19. ANSYS Users Manual, ANSYS, Inc., 2003.

  20. S.K. Choudhary and D. Mazumd: ISIJ Int., 1994, vol. 34 (6), pp. 581–59.

    Google Scholar 

  21. C.P. Hong, S.Y. Lee, and K. Song: ISIJ Int., 2001, vol. 41 (9), pp. 999–1005.

    Article  CAS  Google Scholar 

  22. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishers, New York, NY, 1980.

  23. W.Q. Tao: Numerical Heat Transfer, 2nd ed., Xi’an Jiaotong University Press, Xi’an, 2001.

    Google Scholar 

  24. A.F. Lenhman, G.R. Tallblck, and H.R. Hackl: Proc. Int. Symp. on Electromagnetic Processing of Materials, ISIJ, Nagoya, 1994, pp. 372–77.

    Google Scholar 

  25. B.K. Li and F. Tsukihashi: ISIJ Int., 2001, vol. 41, pp. 844-849.

    Article  CAS  Google Scholar 

  26. M.J. Cho: Numer. Heat Transfer, 2006, vol. 49B (6), pp. 599–15.

    ADS  Google Scholar 

  27. R. Moreau: Magnetohydrodynamics, Kluwer Academic Pub. Co, Norwell, MA, 1990.

    MATH  Google Scholar 

  28. M.J. Cho, I.C. Kim, S.J. Kim, and J.K. Kim: Trans. KSME, 1999, vol. 23B (13), pp. 1491–1502.

    Google Scholar 

  29. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94–107.

    Article  ADS  CAS  Google Scholar 

  30. FLUENT Manual, Fluent, Inc., Lebanon, NH, 2005.

Download references

Acknowledgment

This research was financially sponsored by the National Nature Science Foundation of China under Contract No. 10772044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Wen Li.

Additional information

Manuscript submitted October 13, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, XY., Li, BW. & He, JC. Electromagnetic Brake Effects on the Funnel Shape Mold of a Thin Slab Caster Based on a New Type Magnet. Metall Mater Trans B 40, 596–604 (2009). https://doi.org/10.1007/s11663-009-9246-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9246-y

Keywords

Navigation