Skip to main content
Log in

Dynamic Model for Metal Cleanness Evaluation by Melting in a Cold Crucible

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 μm are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 μm, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Barnard, R.F. Brooks, P.N. Quested, and K.C. Mills: Ironmaking and Steelmaking, 1993, vol. 20 (5), pp. 344–49.

    CAS  Google Scholar 

  2. T. Tanaka, N. Yoshida, Y. Ikenaga, and M. Horie: Proc. 3rd Int. Symp. Electromagnetic Processing Materials, ISIJ, Nagoya, 2000, pp. 271–76.

    Google Scholar 

  3. S. Taniguchi and A. Kikuchi: Proc. 3rd Int. Symp. Electromagnetic Processing Materials, ISIJ, Nagoya, 2000, pp. 315–20.

    Google Scholar 

  4. T. Toh, H. Yamamura, M. Wakoh, and E. Takeuchi: Proc. 4th Int. Symp. Electromagnetic Processing Materials, MADYLAM, Lyon, 2003, pp. 226–31.

    Google Scholar 

  5. T. Toh, H. Yamamura, H. Kondo, M. Wakoh, S. Shimasaki, and S. Taniguchi: ISIJ Int., 2007, vol. 47 (11), pp. 1625–32.

    Article  CAS  Google Scholar 

  6. D. Leenov and A. Kolin: J. Chem. Phys., 1954, vol. 22 (4), pp. 683–88.

    Article  ADS  CAS  Google Scholar 

  7. V. Bojarevics, J. Freibergs, E. Shilova, and E. Shcherbinin: Electrically Induced Vortical Flows, Kluwer Academic Publishers, Dordrecht, 1989, p. 248.

    Google Scholar 

  8. V. Bojarevics, R.A. Harding, K. Pericleous, and M. Wickins: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 785–803.

    Article  CAS  Google Scholar 

  9. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops, and Particles, Dover Publications, Mineola, NY, 2005, p. 381.

    Google Scholar 

  10. P.G. Tucker: J. Fluids Eng., 2001, vol. 123, pp. 372–81.

    Article  CAS  Google Scholar 

  11. K.A. Pericleous and S.N. Drake: Numerical Simulation Fluid Flow Heat/Mass Transfer Processes, Lecture Notes Engineering, Springer, Berlin, 1986, vol. 18, pp. 375–85.

    Google Scholar 

  12. H. Tadano, K. Kainuma, T. Take, T. Shinokura, and S. Hayashi: Proc. 3rd Int. Symp. Electromagnetic Processing Materials, ISIJ, Nagoya, 2000, pp. 277–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bojarevics.

Additional information

This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojarevics, V., Pericleous, K. & Brooks, R. Dynamic Model for Metal Cleanness Evaluation by Melting in a Cold Crucible. Metall Mater Trans B 40, 328–336 (2009). https://doi.org/10.1007/s11663-009-9226-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9226-2

Keywords

Navigation