Skip to main content

White Layer Composition, Heat Treatment, and Crack Formation in Electric Discharge Machining Process


Characteristics of electric discharge machined (EDM) surfaces of normalized, quenched, and quenched and tempered-treated steels in kerosene and deionized-water dielectric liquids are investigated. Optical microscopy, scanning electron microscopy (SEM) and X-ray diffractometry are employed to analyze the machined surface. Surface cracks are examined in terms of white layer composition, heat treatment of the workpiece material, and operational parameters used, such as average discharge current and pulse-on duration. The present results reveal that base material properties and white layer composition have a distinctive function on crack formation that results in different crack network layouts on the surface and penetration depths in the substrate. Surface cracks, which initiate at the surface, travel down perpendicularly toward the interferential zone, and terminate at this interference, are mainly formed due to an increase in nonhomogeneities of metallurgical phases within the white layer. Such cracks are usually encountered on the surfaces when machining is performed in a hydrocarbon-based dielectric liquid using high pulse-on duration and low average discharge current. On the other hand, penetrating cracks, which penetrate the entire white layer thickness to an extent into the parent material, are mainly formed due to contraction of the recast structure joined to the circumferential edge of a crater rim during solidification. This type of crack is common when machining is performed in deionized water and the work material is brittle. Crack penetration depth is found to be proportional to the used pulse energy, and its path has a tendency to form parallel cracks to the machined surface at decreased pulse-on duration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. Furkan is a trademark of Makim Corporation, Ankara, Turkey.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo, Japan.

  3. Rigaku is a trademark of Rigaku Corporation, Tokyo, Japan.


  1. J.A. McGeough, H. Rasmussen: Int. J. Mach. Tool Des. Res., 1982, vol. 22, pp. 333–39

    Article  Google Scholar 

  2. P.H. Thomson: Mater. Sci. Technol., 1989, vol. 5, pp. 1153–57

    CAS  Google Scholar 

  3. O.A. Abu Zeid: J. Mater. Proc. Technol., 1997, vol. 68, pp. 27–32

    Article  Google Scholar 

  4. T.Y. Tai and S.J. Lu: Int. J. Fatigue, 2009, vol. 31, pp. 433–38

  5. H.T. Lee, W.P. Rehbach, T.Y. Tai, F.C. Hsu: J. Mater. Sci., 2004, vol. 39, pp. 6981–86

    Article  CAS  ADS  Google Scholar 

  6. H.T. Lee, F.C. Hsu, T.Y. Tai: Mater. Sci. Eng. A, 2004, vol. 364, pp. 346–56

    Article  CAS  Google Scholar 

  7. L.C. Lee, L.C. Lim, Y.S. Wong, H.H. Lu: J. Mater. Proc. Technol., 1990, vol. 24, pp. 513–23

    Article  Google Scholar 

  8. L.C. Lim, L.C. Lee, Y.S. Wong: J. Mater. Proc. Technol., 1992, vol. 32, pp. 45–54

    Article  Google Scholar 

  9. C.A. Huang, G.C. Tu, H.T. Yao, H.H. Kuo: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1352–57

    Google Scholar 

  10. L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu: Mater. Sci. Technol., 1991, vol. 7, pp. 239–48

    CAS  Google Scholar 

  11. A.G. Mamalis, G.C. Voaniakos, N.M. Vaxevanidis: J. Mach. Work. Technol., 1987, vol. 15, pp. 335–56

    Article  CAS  Google Scholar 

  12. L.C. Lee, L.C. Lim, V. Narayanan, V.C. Venkatesh: Int. J. Mach. Tools Manuf., 1988, vol. 28, pp. 359–72

    Article  Google Scholar 

  13. J.C. Rebelo, A.M. Diaz, D. Kremer, J.L. Lebrun: J. Mater. Proc. Technol., 1998, vol. 84, pp. 90–96

    Article  Google Scholar 

  14. H.T. Lee, T.Y. Tai: J. Mater. Proc. Technol., 2003, vol. 142, pp. 676–83

    Article  CAS  Google Scholar 

  15. L.C. Lee, L.C. Lim, Y.S. Wong, H.S. Fong: J. Mater. Proc. Technol., 1992, vol. 29, pp. 213–21

    Article  Google Scholar 

  16. B. Ekmekci, O. Elkoca, A. Erden: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 117–24

    Article  CAS  Google Scholar 

  17. Y.C. Lin, L.R. Hwang, C.H. Cheng, P.L. Su: J. Mater. Proc. Technol., 2008, vol. 206, pp. 491–99

    Article  CAS  Google Scholar 

  18. Y.H. Guu, M. Ti-Kuang Hou: Mater. Sci. Eng. A, 2007, vol. 466, pp. 61–67

    Article  CAS  Google Scholar 

  19. B. Bhattacharyya, S. Gangopadhyay, B.R. Sarkar: J. Mater. Proc. Technol., 2007, vol. 189, pp. 169–77

    Article  CAS  Google Scholar 

  20. O. Elkoca: Surf. Coat. Technol., 2008, vol. 202, pp. 2765–74

    Article  CAS  Google Scholar 

  21. B. Ekmekci: Appl. Surf. Sci., 2007, vol. 253, pp. 9234–40

    Article  ADS  CAS  Google Scholar 

  22. V. Yadav, V.K. Jain, P.M. Dixit: Int. J. Mach. Tools Manuf., 2002, vol. 42, pp. 877–88

    Article  Google Scholar 

  23. P.D. Kumar: J. Mater. Proc. Technol., 2008, vol. 202, pp. 86–95

    Article  CAS  Google Scholar 

Download references


The author thanks the Zonguldak Karaelmas University Research Fund for financial support of this research. The author is also thankful to Ereğli Iron and Steel Work Company for the use of their facilities.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bülent Ekmekci.

Additional information

Manuscript submitted August 20, 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ekmekci, B. White Layer Composition, Heat Treatment, and Crack Formation in Electric Discharge Machining Process. Metall Mater Trans B 40, 70–81 (2009).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Electric Discharge Machine
  • Work Material
  • White Layer
  • Recast Layer
  • Dielectric Liquid