Skip to main content
Log in

The Kinetics of the Chlorination of Yttrium Oxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The chlorination kinetics of Y2O3 with chlorine to produce YOCl was studied by thermogravimetry over a temperature range from 575 °C to 975 °C. The influence of convective mass transfer into the boundary layer surrounding the sample, gaseous diffusion into the sample pores, partial pressure of chlorine, and temperature on the reaction rate were analyzed in order to determine the rate-controlling step. The thermogravimetric and scanning electron microscopy (SEM) results showed that the process follows a model of nucleation and growth, and the process is chemically controlled for temperatures lower than 800 °C, with an activation energy (Ea) of 187 ± 3 kJ/mol. In the 850 °C to 975 °C range the reaction rate was affected by diffusion of Cl2 through the gas film surrounding the sample, with apparent Ea of 105 ± 11 kJ/mol.

A global rate equation that includes these parameters has been developed \( {\text{R}} = d\alpha /dt = 10^{5}\,{\text{kPa}}^{{ - 1}} {\cdot} \exp {\left( { - \frac{{187\;{\text{kJ}} {\cdot} {\text{mol}}^{{ - 1}} }} {{{\text{R}} {\cdot} T}}} \right)} {\cdot} p{\text{Cl}}_{2} {\cdot} 1.51 {\cdot} {\left( {1 - \alpha } \right)} {\cdot} {\left[ { - \ln {\left( {1 - \alpha } \right)}} \right]}^{{0.34}} \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. M. Gimenes, H. Oliveira: Metall. Trans. B, 2001, vol. 32B, pp. 1007–13

    CAS  Google Scholar 

  2. F.H. Spedding: in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneider, Jr. and L. Eyring, eds., North-Holland, Amsterdam, 1978, p. 15

  3. G. Morteani: Eur. J. Mineral, 1991, vol. 3, pp. 641–50

    CAS  Google Scholar 

  4. C.K. Gupta, N. Krishnamurthy: Int. Mater. Rev., 1992, vol. 37 (5), pp. 197–248

    CAS  Google Scholar 

  5. E. Augusto, H. Oliveira: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 785–91

    Article  CAS  Google Scholar 

  6. A.I. Braginski, A.O. Isenberg, M.T. Miller, and T.R. Oeffinger: Ceram. Bull., 1972, vol. 51 (8), pp. 630–32 and 636

  7. D.M. Pasquevich, A.M. Caneiro: Thermochim. Acta, 1989, vol. 156, pp. 275–83

    Article  CAS  Google Scholar 

  8. H.S. Ray: J. Therm. Anal., 1990, vol. 36, pp. 743–64

    Article  CAS  Google Scholar 

  9. HSC 6.1, Outukumpu Research Oy, Pori, Finland

  10. Y.B. Patrikeev, G.I. Novikov, V.V. Badovskii: Russ. J. Phys. Chem., 1973, vol. 47 (2), p. 284

    Google Scholar 

  11. V.S. Yungman, V.P. Glushko, V.A. Medvedev, L.V. Gurvich: Thermal Constants of Substances, Wiley, New York, NY, 1999

    Google Scholar 

  12. H. Oppermann, S. Ehrlich, C. Hennig: Z. Naturforsch., Bi: Chem. Sci., 1997, vol. 52 (3), pp. 305–10

    CAS  Google Scholar 

  13. Joint Committee for Powder Diffraction Standards, Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1996 (card number 120786)

  14. I. Barin: Thermochemical Data of Pure Substances, VCH Verlags Gesellschaft, Weinheim, 1993

    Google Scholar 

  15. J. Szekely, J.W. Evans, and H.Y. Sohn: Gas-Solid Reactions, Academic Press, New York, NY, 1976, chap. 2, pp. 10–22

  16. A.W.D. Hills: Metall. Trans. B, 1978, vol. 9B, pp. 121–28

    ADS  CAS  Google Scholar 

  17. W.E. Ranz, W.R. Marshall Jr.: Chem. Eng. Prog., 1952, vol. 48 (3), pp. 141–46

    CAS  Google Scholar 

  18. W.E. Ranz, W.R. Marshall Jr.: Chem. Eng. Prog., 1952, vol. 48 (4), pp. 173–80

    CAS  Google Scholar 

  19. G.H. Geiger and D.R. Poirier: Transport Phenomena in Metallurgy, Addison-Wesley, Massachusetts, MA, 1973, chap. 1, pp. 7–13

  20. G. Hakvoort: Thermochim. Acta, 1994, vol. 233, pp. 63–73

    Article  CAS  Google Scholar 

  21. J.H. Flynn: J. Therm. Anal., 1988, vol. 34, pp. 367–81

    Article  CAS  Google Scholar 

  22. S. Vyazovkin: Thermochim. Acta, 2000, vol. 355, pp. 155–63

    Article  CAS  Google Scholar 

  23. M. Avrami: J. Chem. Phys., 1939, vol. 7 (12), pp. 1103–113

    Article  ADS  CAS  Google Scholar 

  24. M. Avrami: J. Chem. Phys., 1940, vol. 8 (2), pp. 212–24

    Article  ADS  CAS  Google Scholar 

  25. M. Avrami: J. Chem. Phys., 1941, vol. 9 (2), pp. 177–84

    Article  ADS  CAS  Google Scholar 

  26. W.A. Johnson, R.F. Mehl: Trans. Am. Inst. Min. Metall. Eng., 1939, vol. 135, pp. 416–27

    Google Scholar 

  27. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1965, chap. 12, pp. 525–48

  28. A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: J. Mater. Sci., 2002, vol. 37 (2), pp. 1321–32

    Article  CAS  Google Scholar 

  29. A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: Acta Mater., 2002, vol. 50 (14), pp. 1319–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional del Comahue for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.P. Gaviría.

Additional information

Manuscript submitted April 23, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaviría, J., Bohé, A. The Kinetics of the Chlorination of Yttrium Oxide. Metall Mater Trans B 40, 45–53 (2009). https://doi.org/10.1007/s11663-008-9215-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9215-x

Keywords

Navigation