Skip to main content

Advertisement

Log in

The Kinetics of Reduction of Dense Synthetic Nickel Oxide in H2-N2 and H2-H2O Atmospheres

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An investigation of the kinetics of reduction of dense synthetic nickel oxide has been carried out in H2-N2 and H2-H2O mixtures between 500 °C and 1000 °C. The progress of the reduction was followed metallographically by the measurement of the advance of the nickel product layer. The influences of hydrogen partial pressure, hydrogen-steam ratio, and temperature were systematically investigated in both sets of the mixtures. Increasing hydrogen partial pressure under all conditions investigated results in an increase in the reduction rate. In H2-N2 mixtures and H2-H2O mixtures with low steam content, the initial reduction rate was found to be first order with respect to hydrogen partial pressure. In both sets of mixtures, it was found that the progress of Ni thickness was not a monotonic function of temperature. A minimum rate of advancement of Ni product was observed between 600 °C and 800 °C, depending on the hydrogen partial pressures and reduction time. The change in reduction behavior is shown to be directly linked to changes in Ni product microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Olympus is a trademark of Olympus Corp., Tokyo.

  2. JEOL is a trademark of JEOL Ltd., Tokyo.

References

  1. J.G. Reid and J.E. Fittock: Int. Laterite Nickel Symp., Charlotte, NC, 2004, TMS, Warrendale, PA, 2004, pp. 599–618

  2. T.A. Utigard, M. Wu, G. Plascencia, T. Marin: Chem. Eng. Sci., 2005, vol. 60 (7), pp. 2061–68

    Article  CAS  Google Scholar 

  3. R.P. Furstenau, G. McDougall, M.A. Langell: Surf. Sci., 1985, vol. 150, pp. 55–79

    Article  ADS  CAS  Google Scholar 

  4. J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, J.Y. Kim, M. Perez: J. Am. Chem. Soc., 2002, vol. 124 (2), pp. 346–54

    Article  PubMed  CAS  Google Scholar 

  5. N.J. Themelis, W.H. Gauvin: CIM Bull., 1962, vol. 55 (603), pp. 444–56

    CAS  Google Scholar 

  6. C. Wagner: Steelmaking: The Chipman Conf., MIT Press, Dedham, MA, 1962, pp. 19–26

    Google Scholar 

  7. B.Z. Ilschner: Metallkd., 1964, vol. 55, pp. 153–62

    CAS  Google Scholar 

  8. K.J. Best, H.J. Grabke: Phys.Chem., 1971, vol. 75, pp. 524–32

    CAS  Google Scholar 

  9. K.R. Lilius: Acta Ploytech. Scand., 1974, vol. 118, pp. 1–17

    Google Scholar 

  10. V.V. Boldyrev, M. Bulens, B. Delmon: The Control of the Reactivity of Solids: Studies in Surface Science and Catalysis, Elsevier Scientific Publishing Company, Amsterdam, 1979

    Google Scholar 

  11. P.C. Hayes: Metall. Trans. B, 1979, vol. 10B, pp. 211–17

    Article  ADS  CAS  Google Scholar 

  12. P.C. Hayes: Miner. Process. Extr. Metall. Rev., 1992, vol. 8: pp. 73–94

    Article  ADS  Google Scholar 

  13. T. Deb Roy, K.P. Abraham: Physical Chemistry of Process Metallurgy: The Richardson Conf., Institute of Mining and Metallurgy, London, 1973, pp. 85–93

    Google Scholar 

  14. J.W. Evans, S. Song, C.E. Leon-Sucre: Metall. Trans. B, 1976, vol. 7B, pp. 55–65

    ADS  CAS  Google Scholar 

  15. S. Sridhar, D. Sichen, S. Seetharaman: Z. Metallkd., 1994, vol. 85 (9), pp. 616–20

    CAS  Google Scholar 

  16. A.H. Rashed, Y.K. Rao: Chem. Eng. Commun., 1996, vol. 156, pp. 1–30

    Article  Google Scholar 

  17. Y.K. Rao and A.H. Rashed: Trans. Inst. Min. Metall., Sect. C, 2001, vol. 110, pp. 1–6

  18. S. Vogel, E. Ustundag, J.C. Hanan, V.W. Yuan, M.A.M. Bourke: Mater. Sci. Eng., 2002, vol. A333, pp. 1–9

    CAS  Google Scholar 

  19. J.T. Richardson, R. Scates, M.V. Twigg: Appl. Catal., A, 2003, vol. 246, pp. 137–50

    Article  CAS  Google Scholar 

  20. S.P. Matthew, D.H. St. John, J.V. Hardy, P.C. Hayes: Metallography, 1985, vol. 17, pp. 367–79

    Article  Google Scholar 

  21. D.H. St. John, P.C. Hayes: Metall. Trans. B, 1982, vol. 13B, pp. 117–24

    Article  ADS  CAS  Google Scholar 

  22. T. Hidayat, M.A. Rhamdhani, E. Jak, P. Hayes: Miner. Eng., 2008, vol. 21 (2), pp. 157–66

    Article  CAS  Google Scholar 

  23. C.W. Bale, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228

  24. W. Pluschkell, B.V.C. Sarma: Arch. Eisen., 1974, vol. 45 (1), pp. 23–31

    CAS  Google Scholar 

  25. Y. Iida, K. Shimada: Bull. Chem. Soc. Jpn., 1960, vol. 33 (6), pp. 790–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the BHP Billiton Yabulu Refinery and Australian Research Council Linkage program for their financial support. The authors also thank AusAid for providing a scholarship for TH. The authors also acknowledge Mr. John Fittock and Dr. Joy Morgan (BHP Billiton Yabulu) for their valuable help and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hidayat.

Additional information

Manuscript submitted May 18, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidayat, T., Rhamdhani, M., Jak, E. et al. The Kinetics of Reduction of Dense Synthetic Nickel Oxide in H2-N2 and H2-H2O Atmospheres. Metall Mater Trans B 40, 1–16 (2009). https://doi.org/10.1007/s11663-008-9212-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9212-0

Keywords

Navigation