Skip to main content
Log in

A Periodically Reversed Flow Driven by a Modulated Traveling Magnetic Field: Part II. Theoretical Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A flow of liquid GaInSn, which has been investigated experimentally in a companion article,[1] is modeled analytically in this article. The role of this electromagnetically driven flow is to transport the solute rejected by the solidifying interface at significant distances in the melt, and to periodically reverse its circulation such that macrosegregation is minimized. First, we present an analytical derivation of the electromagnetic force, exhibiting its space and time variations, which are essentially legitimate in the central part of the fluid domain. A model for the recirculating fluid flow is also derived, assuming that in this central region the flow is quasiparallel to the main axis. The narrowness of the fluid domain must be taken into account, to achieve a satisfactory agreement with the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

vector potential (T·m)

A 0 :

amplitude of the vector potential (∼10−3 T·m)

a :

half-width of liquid domain in y direction (5 mm)

a n , b n :

coefficient of Fourier series

B :

magnetic field (T)

B x , B y , B z :

components of magnetic field (T)

B 0 :

amplitude of the magnetic field (∼102 T)

C :

coefficient of transversal end effect

F 0 :

electromagnetic forces (∼102 N/m3)

F :

electromagnetic force (N/m3)

F x , F y , F z :

components of the electromagnetic forces (N/m3)

f 0 :

basic frequency (50(60) Hz)

f m :

inverse modulation frequency (∼0 to 6 Hz)

H :

liquid domain height (6 cm)

J :

electric current

j x , j y , j z :

components of the electric current (A/m3)

k :

\( k = \frac{{2\pi }} {l} \), wave number (98 m−1)

k * :

\( k^{{*2}} = k^{2} + \frac{{\pi ^{2} }} {{4a^{2} }} \), wave number in narrow liquid domain (329 m−1)

L :

liquid domain length (10 cm)

l :

wavelength (64 mm)

l m :

\( l_{m} = l\frac{{f_{0} }} {{f_{m} }} \) (mm)

M(z), G(y), Q(z):

coordinate-dependent function of vector potential

m(t):

time-dependence modulation function

P :

pressure (N/m2)

T :

time (s)

t 0 :

fraction of half-period during which TMF travels in one direction (s)

t i :

interval time of half-period during which TMF travels in one direction (80 ms)

U 0 :

core flow velocity in the vertical symmetry plane (m/s)

u 0 :

core flow velocity (m/s)

U s :

synchronism velocity of linear inductor (m/s)

X :

kx + βz−ω0 t

X * :

\( X^{*} = k^{*} x + \frac{{\pi y}} {{2a}} + \beta ^{*} z - \omega _{0} t \)

\( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{X}^{*} \) :

\( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{X} = k^{*} m{\left( t \right)}x + \frac{{\pi y}} {{2a}} + \beta ^{*} z - \omega _{0} t \)

α :

α = k (98 m−1)

α * :

α* ≈ k* (329 m−1)

β :

\( \beta = - \frac{{\mu \sigma \omega _{0} }} {{2k}} \) (−6.8 m−1)

β * :

\( \beta ^{*} = - \frac{{\mu \sigma \omega _{0} }} {{2k^{*} }} \) (−2.0 m−1)

δ m :

skin depth of magnetic field, δ m = 1/α (10.2 mm)

δ l :

laminar flow boundary layer, \( \delta _{l} = {\sqrt {\frac{{\nu {\cdot} x}} {{U_{0} }}} } \)

δ t :

turbulence flow boundary layer, \( \delta _{t} = {\sqrt {\frac{{a {\cdot} x}} {{10}}} } \)

δ ω :

oscillating flow boundary layer, \( \delta _{\omega } = {\sqrt {\nu \mathord{\left/ {\vphantom {\nu {2\pi f_{m} }}} \right. \kern-\nulldelimiterspace} {2\pi f_{m} }} } \)

μ :

magnetic permeability (4π × 10−7 H m−1)

ν :

kinematic viscosity (3.4 × 10−7 m2 s−1)

ν t :

turbulence viscosity (1.25 × 10−5 m2 s−1)

ρ :

GaInSn (6.4 × 103 kg m−3)

σ :

electrical conductivity (3.4 × 106 (Ω·m)−1)

τ = l/2:

pole pitch (32 mm)

φ:

scalar potential

ω 0 :

basic angle frequency ω0 = 2π·f 0 (100 π)

ω m :

modulation angle frequency ω m  = 2π·f m

References

  1. X.D. Wang, Y. Fautrelle, J. Etay, and R. Moreau: Metall. Mater. Trans. B, 2009. DOI:10.1007/s11663-008-9176-0

  2. X.D. Wang, A. Ciobanas, and Y. Fautrelle: Mater. Sci. Forum, 2006, vol. 508, pp. 163–68

    Article  CAS  Google Scholar 

  3. S. Eckert, P.A. Nikrityuk, D. Raebiger, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 977–88

    Article  ADS  CAS  Google Scholar 

  4. B. Willers, S. Eckert, P.A. Nikrityuk, D. Raebiger, J. Dong, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 304–16

    Article  ADS  CAS  Google Scholar 

  5. R. Moreau: Magnetohydrodynamics, Kluwer Academic Publishers, Dordrecht, Netherlands, 1990, pp. 250−51

  6. T. Robinson, and K. Larsson: J. Fluid Mech., 1973, vol. 60, pp. 641–64

    Article  ADS  Google Scholar 

  7. H. Schlichting: Boundary-Layer Theory, 7th ed., J. Kerstin, transl., McGraw-Hill Press, New York, NY, 1990, pp. 26 and 42

Download references

Acknowledgments

The authors acknowledge the Europe Space Agency, specifically, the CETSOL project (ESA-MAP AO-99-117) and the European Commission, under PI-IMPRESS (Contract No. NMP3-CT-2004-500635), for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Manuscript submitted April 11, 2008.

Appendix

Appendix

To solve the second-order differential equation

$$ \frac{{M^{\prime \prime} {\left( z \right)}}} {{M{\left( z \right)}}} = {\left( {k^{2} - i\mu \sigma \omega } \right)} $$
(A1)

let us denote r 2=k 2 − iμσω, while = α ± iβ is a complex number, the real and imaginary parts of which satisfy

$$ \left\{ \begin{aligned}{} & \alpha ^{2} - \beta ^{2} = k^{2} , \\ & 2\alpha \beta = - \mu \sigma \omega \\ \end{aligned} \right. $$
(A2)

The two roots are such that the general solution of Eq. [A1] is

$$ M{\left( z \right)} = C_{1} \exp {\left[ {{\left( {\alpha - i\beta } \right)}z} \right]} + C_{2} \exp {\left[ { - {\left( {\alpha - i\beta } \right)}z} \right]} $$
(A3)

To get a zero value of M(z → ∞), we must chose C 1 = 0; we get

$$ M{\left( z \right)} = \exp {\left[ { - \alpha z + i\beta z} \right]} $$
(A4)

The boundary condition at the bottom wall (j z (= 0) = 0) is satisfied, because the real part of M(z) cancels as sin (βz).

With the usual definition \( \delta = {\sqrt {\frac{2} {{\mu \sigma \omega }}} } \), ω = 2πf, the solution of [A2] can be written as

$$ \alpha = \frac{k} {{{\sqrt 2 }}}{\left( {1 + {\sqrt {1 + \frac{4} {{k^{4} \delta ^{4} }}} }} \right)}^{{\frac{1} {2}}} ,\quad \beta = - \frac{{\mu \sigma \omega }} {{k{\sqrt 2 }}}{\left( {1 + {\sqrt {1 + \frac{4} {{k^{4} \delta ^{4} }}} }} \right)}^{{ - \frac{1} {2}}} $$
(A5)

In the case = 50 Hz, \( \frac{4} {{k^{4} \delta ^{4} }} \ll 1 \), so that we can take the approximate values

$$ \alpha \approx k,\quad \beta = - \frac{{\mu \sigma \omega }} {{2k}} $$
(A6)

This means that, under the conditions of this experiment, the skin depth α−1 is not determined by the frequency but by the pole pitch.

The same technique applies to the case of a narrow liquid domain, with the new equation

$$ \frac{{g^{\prime \prime} {\left( z \right)}}} {{g{\left( z \right)}}} = k^{2} + {\left( {\frac{\pi } {{2a}}} \right)}^{2} - i\mu \sigma \omega $$
(A7)

In order to keep this algebra valid, we simply have to introduce \( k^{{ * 2}} = k^{2} + {\left( {\frac{\pi } {{2a}}} \right)}^{2} \) and

$$ \alpha ^{*} = \frac{{k^{*} }} {{{\sqrt 2 }}}{\left( {1 + {\sqrt {1 + \frac{4} {{k^{{*4}} \delta ^{4} }}} }} \right)}^{{\frac{1} {2}}} ,\quad \beta ^{*} = - \frac{{\mu \sigma \omega }} {{k^{*} {\sqrt 2 }}}{\left( {1 + {\sqrt {1 + \frac{4} {{k^{{*4}} \delta ^{4} }}} }} \right)}^{{ - \frac{1} {2}}} $$
(A8)

to make this algebra still valid. The approximation \( \frac{4} {{k^{{*4}} \delta ^{4} }} \ll 1 \) is still justified, so that the expressions in Eq. [A6] can be generalized as

$$ \alpha ^{*} \approx k^{*} ,\quad \beta ^{*} = - \frac{{\mu \sigma \omega }} {{2k^{*} }} $$
(A9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Moreau, R., Etay, J. et al. A Periodically Reversed Flow Driven by a Modulated Traveling Magnetic Field: Part II. Theoretical Model. Metall Mater Trans B 40, 104–113 (2009). https://doi.org/10.1007/s11663-008-9210-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9210-2

Keywords

Navigation