Skip to main content
Log in

Carbothermal Reduction of Manganese Oxide in Different Gas Atmospheres

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Carbothermal reduction of manganese oxides was studied in hydrogen, helium, and argon at different temperatures and carbon-to-manganese oxide ratios. Isothermal and temperature programmed carbothermal reduction experiments were conducted in a fixed bed reactor in a vertical tube furnace, with on-line monitoring of gas composition by the CO-CO2 infrared sensor. The extent of reduction was calculated using the off-gas composition and LECO oxygen contents in the reduced samples. In all gas atmospheres, the reaction rate increased with temperature. The reduction rate of manganese oxide in hydrogen was higher than in helium, and in helium higher than in argon. This was attributed to the involvement of hydrogen in the reduction process and the difference in CO and CO2 diffusion coefficients in helium and argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. W.J. Rankin, J.S.J. Van Deventer: J. S. Afr. Inst. Min. Metall., 1980, vol. 80, pp. 239–47

    CAS  Google Scholar 

  2. W.J. Rankin, J.R. Wynnyckyj: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 307–19

    Article  CAS  Google Scholar 

  3. R.H. Eric, E. Bucuru: Miner. Eng., 1992, vol. 5, pp. 795–815

    Article  CAS  Google Scholar 

  4. M.I. Gasik: Manganese, Metallurgiya, Moscow, 1992 (in Russian)

  5. W.D. Grimsley, J.B. See, R.P. King: J. S. Afr. Inst. Min. Metall., 1977, vol. 10, pp. 51–62

    Google Scholar 

  6. R. Rait, S.E. Olsen: Scand. J. Metall., 1999, vol. 28, pp. 53–58

    CAS  Google Scholar 

  7. O. Ostrovski, T.J.M. Webb: ISIJ Int., 1995, vol. 35, pp. 1331–39

    Article  CAS  Google Scholar 

  8. M. Yastreboff, O. Ostrovski, and S. Ganguly: Proc. 8th Int. Ferroalloys Congr., China Science & Technology Press, Beijing, 1998, pp. 263–70

  9. M. Yastreboff, O. Ostrovski, S. Ganguly: ISIJ Int., 2003, vol. 43, pp. 161–65

    Article  CAS  Google Scholar 

  10. M. Tangstad: Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1996

  11. K. Terayama, M. Ikeda: Trans. Jpn. Inst. Met., 1985, vol. 26, pp. 108–14

    Google Scholar 

  12. T. Skjervheim and S. Olsen: Proc. 7th Int. Ferroalloys Congr., Trondheim, Norway, The Norwegian Ferro Alloy Research Organization (FFF) and SINTEF Materials Technology, Trondheim, Norway, 1995, pp. 631–39

  13. A. Koursaris and J.B. See: “The Resistivity of Mixtures of Mamatwan Manganese Ore and Reducing Agents,” Report No. 1982, National Institute for Metallurgy, Johannesburg, 1978, pp. 1–13

  14. A. Koursaris, C.W.P. Finn: Trans. ISIJ, 1985, vol. 25, pp. 109–17

    CAS  Google Scholar 

  15. A. Koursaris and J.B. See: “Reactions in the Production of High-Carbon Ferromanganese from Mamatwan Manganese Ore,” Report No. 1975, National Institute for Metallurgy, Johannesburg, 1978, pp. 1–15

  16. W. Ding: Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1993

  17. R. Bird, W. Stewart, E. Lightfoot: Transport Phenomena, John Wiley and Sons, New York, NY, 1960

    Google Scholar 

  18. O. Knacke, O. Kubaschewski, K. Hesselmann: Thermochemical Properties of Inorganic Substances I, 2nd ed., Springer-Verlag, New York, NY, 1991

    Google Scholar 

  19. J. Szekely, J.W. Evans, H.Y. Sohn: Gas-Solid Reactions, Academic Press, New York, NY, 1976, pp. 178–83

    Google Scholar 

  20. K. Wagner: in Steelmaking: The Chipman Conf., Proc. Conf. Physical Chemistry and Technology of Steelmaking, Dedham, MA, June 4–7, 1962, MIT Press, Cambridge, MA, 1962, pp. 19–25

  21. H.Y. Sohn: in Rate Processes of Extractive Metallurgy, H.Y. Sohn, M.E. Wadsworth, eds., Plenum Press, New York, NY, 1979, pp. 1–49

    Google Scholar 

  22. W.-K. Lu: in Direct Reduced Iron, Technology and Economics of Production and Use, J. Feinman, D.R. Mac Rae, eds., ISS, Warrendale, PA, 1999, pp. 43–57

    Google Scholar 

  23. O.M. Fortini, R.J. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 865–72

    Article  CAS  Google Scholar 

  24. O.M. Fortini, R.J. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 709–17

    Article  CAS  Google Scholar 

  25. K. Dewar and J.B. See: Report No. 1968, National Institute for Metallurgy, Randburg, South Africa, 1978

  26. G.J.W. Kor: Metall. Trans. B, 1978, vol. 9B, pp. 307–11

    Article  CAS  Google Scholar 

  27. G. Akdogan, R.H. Eric: Miner. Eng., 1994, vols. 7 (5–6), pp. 633–45

    Article  CAS  Google Scholar 

  28. J.R. Wynnyckyj, W.J. Rankin: Metall. Trans. B, 1988, vol. 19B, pp. 73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported under the Australian Research Council’s Linkage Projects funding scheme (Project No. LP0228735) and the Tasmanian Electrometallurgical Company. One of the authors (OO) is the recipient of an Australian Research Council Professorial Fellowship (Project No. DP0771059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ring Kononov.

Additional information

Manuscript submitted April 9, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononov, R., Ostrovski, O. & Ganguly, S. Carbothermal Reduction of Manganese Oxide in Different Gas Atmospheres. Metall Mater Trans B 39, 662–668 (2008). https://doi.org/10.1007/s11663-008-9191-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9191-1

Keywords

Navigation