Skip to main content
Log in

Enhancement of Au Dissolution by Microorganisms Using an Accelerating Cathode Reaction

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A Chromobacterium violaceum (C. violaceum) strain that produces cyanide was used to dissolve Au. In this bacterial Au dissolution process, decreased dissolved oxygen concentration in the bacterial medium significantly inhibits Au dissolution. Although aeration is effective in increasing the level of dissolved oxygen in the bacterial medium, it is not effective in increasing Au dissolution during the growth phase of the bacteria because of the latter’s high respiratory consumption of oxygen. The present study investigated the utility of H2O2, rather than aeration, for increasing dissolved oxygen concentrations in bacterial growth medium. It was anticipated that the stronger oxidation reagent would increase Au dissolution by accelerating the cathode reaction during the bacterial growth phase. In fact, the addition of H2O2 to the bacterial culture increased dissolved oxygen concentrations in the growth phase and also drastically increased the dissolution rate of Au. Electrochemical measurements indicated that H2O2 addition to the bacterial medium accelerated the cathode reaction and thus enhanced Au dissolution by this biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Fujita and W.T. Yen: Symp. on Actions for Environmental Concern in Electronics Assembly, Tokyo and Osaka (2 days), Japan, 2001, pp. 118–27. Available at: http://wwwsoc.nii.ac.jp/jws/research/micro/aecea/aecea%207.html (the site is Japanese only)

  2. D. Norman, and R. Raforth: Wash. Geol., 1995, vol. 23 (1), pp. 30–41

    Google Scholar 

  3. G. Olson: FEMS Microbiol. Lett., 1994, vol. 119, pp. 1–6

    Article  CAS  Google Scholar 

  4. M. Moss, and C. Ryall: The Prokaryotes, 2nd ed., Springer-Verlag, New York, NY, 1981, pp. 1356–64

    Google Scholar 

  5. R. Michaels, and W. Corpe: J. Bacteriol., 1965, vol. 89 (1), pp. 106–12

    PubMed  CAS  Google Scholar 

  6. A.M. Macadam, and C.J. Knowles: Biochem. Biophys. Acta, 1984, vol. 786, pp. 123–32

    CAS  Google Scholar 

  7. P.B. Rodgers: J. Gen. Microbiol., 1978, vol. 108, pp. 261–67

    CAS  Google Scholar 

  8. P.B. Rodgers: J. Gen. Microbiol., 1982, vol. 128, pp. 2983–89

    CAS  Google Scholar 

  9. M.A. Faramarzia, M. Stagarsa, E. Pensinib, W. Krebsb, and H. Brandl: J. Biotech., 2004, vol. 113 (1–3), pp. 321–26

    Article  Google Scholar 

  10. Y. Kita, H. Nishikawa, and T. Takemoto: J. Biotechnol., 2006, vol. 124, pp. 545–51

    Article  PubMed  CAS  Google Scholar 

  11. H. Hedley and H. Tabachnick: Mineral Dressing Notes, American Cyanamid Co., 1958, no. 23

  12. D.H. Rubisov, V.G. Papangelakis, and P.D. Kondos: Can. Inst. Min. Metall., 1996, vol. 35 (4), pp. 353–61

    CAS  Google Scholar 

  13. P. Ling, V.G. Papangelakis, S.A. Argyropoulos, and P.D. Kondos: Can. Metall. Q., 1996, vol. 35 (3), pp. 225–34

    Article  Google Scholar 

  14. L.R.P. de Andrade Lima, and D. Hodouin: Hydrometallurgy, 2005, vol. 79, pp. 121–37

    Article  Google Scholar 

  15. K. Haque: CIM Bull., 1992, vol. 85 (963), pp. 31–38

    CAS  Google Scholar 

  16. A.R. Heath, and J.A. Rumball: Min. Eng., 1998, vol. 11, pp. 999–1010

    Article  CAS  Google Scholar 

  17. D.K. Peter, and F.G. Wesley: Can. Metall. Q., 1995, vol. 35, pp. 39–45

    Google Scholar 

  18. M.E. Wadsworth: Int. J. Miner. Process., 1999, vol. 58, pp. 351–68

    Article  Google Scholar 

  19. S. Foucher, F. Battaglia-Brunet, P. d’Hugues, M. Clarens, J.J. Godon, and D. Morin: Hydrometallurgy, 2003, vol. 71 (1–2), pp. 5–12

    Article  CAS  Google Scholar 

  20. L. Guzman, M. Segarra, J.M. Chimenos, M.A. Fernandez, and F. Espiell: Hydrometallurgy, 1999, vol. 52, pp. 21–35

    Article  CAS  Google Scholar 

  21. G. Cerny: Packag. Technol. Sci., 1992, vol. 5, pp. 77–81

    Article  Google Scholar 

  22. N. Kallay, T. Preocanin, and T. Ivsic: J. Coll. Interface Sci., 2007, vol. 309, pp. 21–27

    Article  CAS  Google Scholar 

  23. A.K. Singh, A.K. Jain, and S. Mehtab: Anal. Chem. Acta, 2007, vol. 597, pp. 322–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Kita.

Additional information

Manuscript submitted November 5, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, Y., Nishikawa, H., Ike, M. et al. Enhancement of Au Dissolution by Microorganisms Using an Accelerating Cathode Reaction. Metall Mater Trans B 40, 39–44 (2009). https://doi.org/10.1007/s11663-008-9177-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9177-z

Keywords

Navigation