Skip to main content
Log in

Kinetics of Pressure Dissolution of Enargite in Sulfate-Oxygen Media

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Enargite (Cu3AsS4) is an increasingly common impurity in Chilean copper concentrates and its presence complicates the conventional treatment of the concentrates by smelting-converting because of the environmental risk of arsenic emissions to the atmosphere. Therefore, the recovery of copper from concentrates with high arsenic content must be carried out by nonconventional technologies. Sulfuric acid leaching processes are viable alternatives to treat copper concentrates with high content of enargite. Hence, in this article, the pressure leaching of enargite in the sulfuric acid-oxygen system is discussed. The leaching was studied at 160 °C to 220 °C and partial pressures of oxygen of 303 to 1013 kPa. The enargite dissolution was determined to occur as predicted by thermodynamics according to \( {\text{Cu}}_{3} {\text{AsS}}_{4}+{\text{8.75O}}_{2}+2{\text{.5H}}_{2} {\text{O}}+{\text{2H}}^{+} =3{\text{Cu}}^{2+}+{\text{H}}_{3} {\text{AsO}}_{4} +{\text{4HSO}}^{-}_{4}.\) The leaching rate increased substantially with increasing temperature. Complete dissolution of enargite with particle size 64 μm was obtained at 220 °C and 689 kPa of oxygen partial pressure in 120 minutes. The dissolution kinetics was analyzed by using the shrinking core model for spherical particles with surface chemical control. The rate of reaction was found to be 1/3 order with respect to the oxygen partial pressure and zero order with respect to sulfuric acid concentration. Activation energy of 69 kJ/mol was estimated for the dissolution reaction, which is a typical value for a chemically controlled process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.V. Wiertz, M. Gutiérrez: in Environment & Innovation in Mining and Mineral Technology, M.A. Sánchez, F. Vergara, S.H. Castro, eds., University of Concepción, Concepción, Chile, 1998, pp. 593–602

    Google Scholar 

  2. J.E. Hoffmann: JOM, 1993, vol. 45 (8), pp. 30–31

    Google Scholar 

  3. N.L. Piret: Proc. Copper 99-Cobre 99 Int. Conf., Vol. I—Mineral Processing/Environment, Health and Safety, B.A. Hancock and M.R.L. Pon, eds., TMS, Warrendale, PA, 1999, pp. 321–40

  4. P. Lattanzi, S. Da Pelo, E. Musu, D. Atzei, B. Elsener, M. Fantauzzi, A. Rossi: Earth Sci. Rev., 2008, vol. 86, pp. 62–88

    Article  Google Scholar 

  5. D. Filippou, P. St-Germain, T. Grammatikopoulos: Miner. Process. Extract. Metall. Rev., 2007, vol. 28, pp. 247–98

    Article  CAS  Google Scholar 

  6. S. Koch, G. Grasselly: Acta Miner. Petrogv. Szeged., 1952, vol. 6, pp. 23–29

    CAS  Google Scholar 

  7. J.E. Dutrizac, R.J.C. MacDonald: Can. Metall. Q., 1972, vol. 11 (3), pp. 469–76

    CAS  Google Scholar 

  8. M.M. Hourn, D.W. Turner, and I.R. Holtzberger: U.S. Patent 5,993,635, Nov. 30, 1999

  9. C.M. Flynn Jr. and T.G. Carnahan: U.S. Patent 4,888,207, Dec. 19, 1989

  10. D.B. Dreisinger and B.R. Saito: Proc. Copper 99-Cobre 99 Int. Conf., Vol. IV—Hydrometallurgy of Copper, S.K. Young, D.B. Dreisinger, R.P. Hachl, and D.G. Dixon, eds., TMS, Warrendale, PA, 1999, pp. 181–95

  11. R.M. Nadkarni, C.L. Kusik: in Arsenic Metallurgy: Fundamentals and Applications, R.G. Reddy, J.L. Hendrix, P.B. Queneau, eds., TMS, Warrendale, PA, 1988, pp. 263–86

    Google Scholar 

  12. O. Herreros, R. Quiroz, M.C. Hernández, J. Viñals: Hydrometallurgy, 2002, vol. 62, pp. 153–60

    Article  Google Scholar 

  13. R. Padilla, D. Girón, M.C. Ruiz: Hydrometallurgy, 2005, vol. 80, pp. 272–79

    Article  CAS  Google Scholar 

  14. A. Roine: HSC Chemistry 4.0, OutoKumpu Research Oy, Pori, Finland, 1999

    Google Scholar 

  15. R.R. Seal II, R.A. Robie, B.S. Hemingway, H.T. Evans Jr.: J. Chem. Thermodyn., 1996, vol. 28, pp. 406–12

    Google Scholar 

  16. J.E. Knight: Econ. Geol., 1977, vol. 72, pp. 1321–36

    CAS  Google Scholar 

  17. P.M. Dove, J.D. Rimstidt: Am. Mineral., 1985, vol. 70, pp. 838–44

    CAS  Google Scholar 

  18. C.M. Criss, J.W. Cobble: J. Am. Chem. Soc., 1964, vol. 86, pp. 5385–90

    Article  CAS  Google Scholar 

  19. E. Peters: Metall. Trans. B, 1976, vol. 7B, pp. 505–17

    Article  CAS  Google Scholar 

  20. R.G. MacDonald, D.M. Muir: Hydrometallurgy, 2007, vol. 86 (3–4), pp. 206–20

    Article  CAS  Google Scholar 

  21. W.E. Harris, B. Kratochvil: An Introduction to Chemical Analysis, Saunders College Publishing, Philadelphia, PA, 1981, pp. 463–64

    Google Scholar 

  22. H.Y. Sohn, M.E. Wadsworth: Rate Processes of Extractive Metallurgy, Plenum Press, New York, NY, 1979, pp. 141–43

    Google Scholar 

  23. D. Tromans: Hydrometallurgy, 1998, vol. 50, pp. 279–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge The National Fund for Scientific and Technological Development, FONDECYT, of Chile for the financial support of this study through Project No. 1050948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Padilla.

Additional information

Manuscript submitted January 29, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, R., Rivas, C. & Ruiz, M. Kinetics of Pressure Dissolution of Enargite in Sulfate-Oxygen Media. Metall Mater Trans B 39, 399–407 (2008). https://doi.org/10.1007/s11663-008-9151-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9151-9

Keywords

Navigation