Severe Plastic Deformation by Machining Characterized by Finite Element Simulation

Article

Abstract

A finite element model of large strain deformation in machining is presented in the context of using machining as a controlled method for severe plastic deformation (SPD). Various characteristics of the large strain deformation field associated with chip formation, including strain, strain distribution, strain rate, and velocity field, are calculated using the model and compared with direct measurements in plane strain machining. Reasonable agreement is found for all cases considered. The versatility and accuracy of the finite element model are demonstrated, especially in the range of highly negative rake angles, wherein the shear plane model of machining is less applicable due to the nature of material flow around the tool cutting edge. The influence of the tool rake angle and friction at the tool-chip interface on the deformation is explored and used to establish correspondences between controllable machining input parameters and deformation parameters. These correspondences indicate that machining is a viable, controlled method of severe plastic deformation. Implications of the results for creation of nanostructured and ultra-fine-grained alloys by machining are briefly highlighted.

References

  1. 1.
    R.Z. Valiev, A.V. Korznikov, M.M. Mulyukov: Mater. Sci. Eng. A, 1993, vol. 168, pp. 141–48. CrossRefGoogle Scholar
  2. 2.
    F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, C. Harris, J. Gil Sevillano, C. Garcia-Rosales, J. Flaquer-Fuster: Philos. Trans. R. Soc. London, Ser. A, 1999, vol. 357, pp. 1663–81CrossRefGoogle Scholar
  3. 3.
    M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: J. Mater. Sci., 2001, vol. 36, pp. 2835–43. CrossRefGoogle Scholar
  4. 4.
    J.D. Embury, R.M. Fisher: Acta Metall., 1966, vol. 14, pp. 147–59CrossRefGoogle Scholar
  5. 5.
    G. Langford, M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38Google Scholar
  6. 6.
    V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–105Google Scholar
  7. 7.
    T.L. Brown, S. Swaminathan, S. Chandrasekar, W.D. Compton, A.H. King, K.P. Trumble: J. Mater. Res., 2002, vol. 17, pp. 2484–88Google Scholar
  8. 8.
    M. Ravi Shankar, B.C. Rao, S. Lee, S. Chandrasekar, A.H. King, W.D. Compton: Acta Mater., 2006, vol. 54, pp. 3691–3700CrossRefGoogle Scholar
  9. 9.
    S. Swaminathan, T.L. Brown, S. Chandrasekar, T.R. McNelley, W.D. Compton: Scripta Mater., 2007, vol. 56, pp. 1047–50CrossRefGoogle Scholar
  10. 10.
    S. Lee, J. Hwang, M. Ravi Shankar, S. Chandrasekar, W.D. Compton: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1633–43CrossRefGoogle Scholar
  11. 11.
    M.C. Shaw: Metal Cutting Principles, Oxford University Press, Oxford, United Kingdom, 1984Google Scholar
  12. 12.
    P.L.B. Oxley: The Mechanics of Machining: An Analytical Approach to Assessing Machinability, John Wiley & Sons, New York, NY, 1989Google Scholar
  13. 13.
    S. Kobayashi, E.G. Thomsen: J. Eng. Ind., 1960, vol. 81, pp. 251–62Google Scholar
  14. 14.
    P.V. Desai, S. Ramalingam: J. Eng. Ind., 1981, vol. 103, pp. 79–80Google Scholar
  15. 15.
    B.E. Klamecki: Ph.D. Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 1973Google Scholar
  16. 16.
    T. Shirakashi and E. Usui: Proc. Int. Congr. Prod. Eng., Tokyo, 1974, pp. 535–40Google Scholar
  17. 17.
    J.S. Strenkowski, J.T. Carroll: J. Eng. Ind., 1985, vol. 107, pp. 349–54CrossRefGoogle Scholar
  18. 18.
    K. Iwata, K. Oskada, Y. Terasaka: J. Eng. Mater. Technol., 1974, vol. 106, pp. 132–38CrossRefGoogle Scholar
  19. 19.
    A.J.M. Shih, S. Chandrasekar, and H.T.Y. Yang: ASME Pub. PED, 1990, pp. 11–24Google Scholar
  20. 20.
    K. Komvopoulos, S.A. Erpenbeck: J. Eng. Ind., 1991, vol. 113, pp. 253–67Google Scholar
  21. 21.
    Z.C. Lin, K.T. Chu, W.C. Pan: J. Mater. Process. Technol., 1994, vol. 41, pp. 291–310CrossRefGoogle Scholar
  22. 22.
    B. Zhang, A. Bagchi: J. Eng. Ind., 1994, vol. 116, pp. 289–97Google Scholar
  23. 23.
    H. Ernst: Machining of Metals, American Society of Metals, Cleveland, OH, 1938Google Scholar
  24. 24.
    I. Finnie: Mech. Eng., 1956, vol. 78, pp. 715–21Google Scholar
  25. 25.
    A.J.M. Shih: Int. J. Mech. Sci., 1996, vol. 38, pp. 1–17MATHCrossRefGoogle Scholar
  26. 26.
    J.T. Carroll, J.S. Strenkowski: Int. J. Mech. Sci., 1988, vol. 30, pp. 899–920. CrossRefGoogle Scholar
  27. 27.
    G.S. Sekhon, J.L. Chenot: Eng. Comp., 1993, vol. 10, pp. 31–48Google Scholar
  28. 28.
    I.S. Jawahir, A.K. Balaji, R. Stevenson, and C.A. van Luttervelt: Symp. Predictable Modeling in Metal Cutting as Means of Bridging Gap between Theory and Practice, Manufacturing Science Technology, American Society of Mechanical Engineers (ASME) International Mechanical Engineering Conference and Exposition (IMECE), ASME, New York, NY, MED-6-2, 1997, pp. 3–12Google Scholar
  29. 29.
    C.A. van Luttervelt, T. Childs, I.S. Jawahir, F. Klocke: Ann. CIRP, 1998, vol. 47, pp. 587–626CrossRefGoogle Scholar
  30. 30.
    E. Ceretti, P. Fallböhmer, W.T. Wu, T. Altan: J. Mater. Process. Technol, 1996, vol. 59, pp. 169–80CrossRefGoogle Scholar
  31. 31.
    A. Simoneau, E. Ng, M.A. Elbestawi: Ann. CIRP, 2006, vol. 55, pp. 97–102Google Scholar
  32. 32.
    E. Uhlmann, M. Graf von der Schulenburg, R. Zettier: Ann. CIRP, 2007, vol. 56, pp. 61–64Google Scholar
  33. 33.
    T.D. Marusich, M. Ortiz: Int. J. Num. Meth. Eng., 1995, vol. 38, pp. 3675–94MATHCrossRefGoogle Scholar
  34. 34.
    V. Madhavan, S. Chandrasekar, T.N. Farris: J. Appl. Mech., 2000, vol. 67, pp. 128–39. MATHCrossRefGoogle Scholar
  35. 35.
    J. Hashemi and R. Stefan: Recent Advances in Structural Mechanics, American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping Conference (PVP), ASME, New York, NY, 1994, vol. 295, pp. 113–25Google Scholar
  36. 36.
    L. Olovsson, L. Nilsson, K. Simonsson: Comput. Struct., 1999, vol. 72, pp. 497–507MATHCrossRefGoogle Scholar
  37. 37.
    M.R. Movahhedy, M.S. Gadala, Y. Altintas: Mach. Sci. Technol., 2000, vol. 4, pp. 15–42CrossRefGoogle Scholar
  38. 38.
    M. Sevier, S. Lee, M.R. Shankar, H.T.Y. Yang, S. Chandrasekar, W.D. Compton: Mater. Sci. Forum, 2006, vols. 503–504, pp. 379–84Google Scholar
  39. 39.
    I.C. Taig: English Electric Aviation Report, S017, England, 1961Google Scholar
  40. 40.
    D.P. Flanagan, T. Belytschko: Int. J. Num. Meth. Eng., 1981, vol. 17, pp. 679–706MATHCrossRefGoogle Scholar
  41. 41.
    M. Kleiber: Incremental Finite Element Modeling in Non-Linear Solid Mechanics, John Wiley & Sons, New York, NY, 1989Google Scholar
  42. 42.
    ABAQUS: ABAQUS Theory Manual, Version 6.5, Hibbitt, Karlsson & Sorenson, Inc., Pawtucket, RI, 2004. Google Scholar
  43. 43.
    D.J. Benson: Comp. Meth. Appl. Mech. Eng., 1989, vol. 72, pp. 305–50MATHCrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007

Authors and Affiliations

  • M. Sevier
    • 1
  • H.T.Y. Yang
    • 1
  • S. Lee
    • 2
  • S. Chandrasekar
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Center for Materials Processing and Tribology, School of Industrial EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations