Skip to main content

Advertisement

Log in

Quench Sensitivity of an Al-7 Pct Si-0.6 Pct Mg Alloy: Characterization and Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

The quench sensitivity of a cast Al-7 wt pct Si-0.6 wt pct Mg alloy was characterized by tensile tests and scanning electron microscopy. Specimens were cooled from the solution treatment temperature following 58 different cooling paths including interrupted and delayed quenches. Analysis of the microstructure showed that quench precipitates were Mg2Si (β), which nucleated heterogeneously on Si eutectic particles as well as in the aluminum matrix, presumably on dislocations. The quench sensitivity of the alloy’s yield strength was modeled by multiple C-curves, using an improved methodology for quench factor analysis. The three C-curves used in the model represented loss of solute by (1) diffusion of Si to eutectic particles, (2) precipitation of β on Si eutectic particles, and (3) precipitation of β in the matrix. The model yielded a R 2 of 0.994 and a root-mean-square error (RMSE) of 7.4 MPa. The model and the implications of the results are discussed in the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.L. Zhang, L. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983–91

    Article  Google Scholar 

  2. M. Robinson: B.A.Sc. Thesis, University of Queensland, Queensland, 1996

  3. L. Pedersen, L. Arnberg: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 525–32

    Article  Google Scholar 

  4. Z.-W. Chen, R. Hu, W.-Q. Jie: Trans. Mater. Heat Treatment (Cailiao Rechuli Xuebao), 2004, vol. 25, pp. 76–78

    Google Scholar 

  5. P.A. Rometsch, G.B. Schaffer: Int. J. Cast Met. Res., 2000, vol. 12, pp. 431–39

    Google Scholar 

  6. T. Croucher and D. Butler: Proc. 26th Nat. SAMPE Symp., SAMPE, Covina, California, 1981, pp. 527–35

  7. M. Tsukuda, S. Koike, M. Harada: J. Jpn. Inst. Light Met., 1978, vol. 28, pp. 8–14

    Google Scholar 

  8. J.W. Evancho, J.T. Staley: Metall. Trans., 1974, vol. 5, pp. 43–47

    Google Scholar 

  9. J.T. Staley: Mater. Sci. Technol., 1987, vol. 3, pp. 923–35

    Google Scholar 

  10. J.T. Staley, R.D. Doherty, A.P. Jaworski: Metall. Trans. A, 1993, vol. 24A, pp. 2417–27

    Google Scholar 

  11. S. Ceresara, E. Di Russo, P. Fiorini, and A. Giarda: Mater. Sci. Eng., 1969–70, vol. 5, pp. 220–27

  12. I. Kovacs, J. Lendvai, E. Nagy: Acta Metall., 1972, vol. 20, pp. 975–83

    Article  Google Scholar 

  13. L. Pedersen, L. Arnberg: Mater. Sci. Eng. A, 1998, vol. A241, pp. 285–89

    Google Scholar 

  14. A.L. Dons, L. Pedersen, L. Arnberg: Mater. Sci. Eng. A, 1999, vol. A271, pp. 91–94

    Google Scholar 

  15. D.L. Zhang: Mater. Sci. Forum, 1996, vol. 217–222, pp. 771–76

    Article  Google Scholar 

  16. T. Din, J. Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 644–50

    Google Scholar 

  17. Aluminum, vol. 1: Properties, Physical Metallurgy and Phase Diagrams, K.R. Van Horn, ed., ASM, 1967

  18. J.T. Staley: Proc. ICAA3, Trondheim, Norway, 1992, pp. 107–43

  19. D.H. Bratland, Ø. Grong, H. Shercliff, O.R. Myhr, S.J. Tjøtta: Acta Mater., 1997, vol. 45, pp. 1–22

    Article  Google Scholar 

  20. P.A. Rometsch, M.J. Starink, P.J. Gregson: Mater. Sci. Eng. A, 2003, vol. A339, pp. 255–64

    Google Scholar 

  21. I.T. Taylor: Can. Metall. Q., 1973, vol. 12, pp. 93–103

    Google Scholar 

  22. S.C. Bergsma, M.E. Kassner, X. Li, and R.S. Rosen: Proc. 3rd Int. Conf. on Processing and Manufacturing Advanced Materials, Las Vegas, NV, Dec. 4–8, 2000

  23. S. Zajac, B. Bengtsson, C. Jönsson, and A. Isaksson: Proc. Extrusion Technology 2000, The Aluminum Association & Aluminum Extruders Council, Chicago, IL, 2000, pp. 73–82

  24. M. Taya, E. Lulay, D.J. Lloyd: Acta Metall. Mater., 1991, vol. 39, pp. 73–87

    Article  Google Scholar 

  25. I. Dutta, S.M. Allen, J.L. Hafley: Metall. Trans. A, 1991, vol. 22A, pp. 2553–63

    Google Scholar 

  26. J.M. Papazian: Metall. Trans. A, 1988, vol. 19A, pp. 2945–53

    Google Scholar 

  27. M.P. Thomas, J.E. King: Scripta Metall. Mater., 1994, vol. 31, pp. 209–14

    Article  Google Scholar 

  28. I.N.A. Oguocha, M. Radjabi, S. Yannacopoulos: J. Mater. Sci., 2000, vol. 35, pp. 5629–34

    Article  Google Scholar 

Download references

Acknowledgment

One of the authors (MT) acknowledges a Summer Research Fellowship from Robert Morris University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Tiryakioğlu.

Additional information

This article is based on a presentation made in the symposium entitled “Simulation of Aluminum Shape Casting Processing: From Design to Mechanical Properties,” which occurred March 12–16, 2006 during the TMS Spring Meeting in San Antonio, Texas, under the auspices of the Computational Materials Science and Engineering Committee, the Process Modeling, Analysis and Control Committee, the Solidification Committee, the Mechanical Behavior of Materials Committee, and the Light Metal Division/Aluminum Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiryakioğlu, M., Shuey, R.T. Quench Sensitivity of an Al-7 Pct Si-0.6 Pct Mg Alloy: Characterization and Modeling. Metall Mater Trans B 38, 575–582 (2007). https://doi.org/10.1007/s11663-007-9027-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9027-4

Keywords

Navigation