Skip to main content

Unconditionally Stable Fully Explicit Finite Difference Solution of Solidification Problems

An Erratum to this article was published on 20 November 2007

An unconditionally stable fully explicit finite difference method for solution of conduction dominated phase-change problems is presented. This method is based on an asymmetric stable finite difference scheme for approximation of diffusion terms and application of the temperature recovery method as a phase-change modeling method. The computational cost of the presented method is the same as the explicit method per time-step, while it is free from time-step limitation due to stability criteria. It robustly handles isothermal and nonisothermal phase-change problems and is very efficient when the global temperature field is desirable (not accurate front position). The robustness, stability, accuracy, and efficiency of the presented method are demonstrated with several benchmarks. Comparison with some stable implicit time integration methods is also included. Numerical experiments show that the evaluated temperature field for large values of the Fourier numbers has good/reasonable agreement with the result of small Fourier numbers and the exact/reference solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. J. Crank: Free and Moving Boundary Problems, Oxford, Clarendon, United Kingdom, 1984

  2. H. Hu, S.A. Argyropoulos: Modell. Simul. Mater. Sci. Eng., 1996, vol. 4, pp. 371–96

    Article  Google Scholar 

  3. V.R. Voller: Adv. Numer. Heat Transfer, 1996, vol. 1, pp. 341–80

    Google Scholar 

  4. R.W. Lewis, K. Ravindran: Int. J. Numer. Methods Eng., 2000, vol. 47, pp. 29–59

    MATH  Article  Google Scholar 

  5. W.D. Murray, F. Landis: J. Heat Transfer, 1959, vol. 81, pp. 106–12

    Google Scholar 

  6. M. Ciment, R.B. Guenther: Appl. Anal., 1974, vol. 4, pp. 39–62

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Ciment, R.A. Sweet: J. Comput. Phys., 1973, vol. 12, pp. 513–25

    Article  MathSciNet  Google Scholar 

  8. B. Rubinsky, E.G. Cravahlo: Int. J. Mass Heat Transfer, 1981, vol. 24, pp. 1987–89

    MATH  Article  Google Scholar 

  9. H.G. Askar: Int. J. Numer. Methods Eng., 1987, vol. 24, pp. 859–69

    MATH  Article  Google Scholar 

  10. J. Douglas, T.M. Gallie: Duke Math. J., 1955, vol. 22, pp. 557–71

    MATH  Article  MathSciNet  Google Scholar 

  11. R.S. Gupta, D. Kumar: Comput. Methods Appl. Mech. Eng., 1980, vol. 23, pp. 101–09

    MATH  Article  Google Scholar 

  12. J.S. Goodling, M.S. Khader: J. Heat Transfer, 1974, vol. 96, pp. 114–15

    Article  Google Scholar 

  13. R.S. Gupta, D. Kumar: Int. J. Mass Heat Transfer, 1981, vol. 24, pp. 251–59

    MATH  Article  Google Scholar 

  14. R.S. Gupta, D. Kumar: Comput. Methods Appl. Mech. Eng., 1981, vol. 29, pp. 233–39

    MATH  Article  Google Scholar 

  15. E.B. Hansen, P. Hougaard: J. Inst. Math. Appl., 1974, vol. 13, pp. 385–98

    MATH  Google Scholar 

  16. H.O. Dahmardah, D.F. Mayers: IMA J. Numer. Analysis, 1983, vol. 3, pp. 81–85

    MATH  Article  MathSciNet  Google Scholar 

  17. A. Lazaridis: Int. J. Mass Heat Transfer, 1970, vol. 13, pp. 1459–77

    MATH  Article  Google Scholar 

  18. H.M. Ettouney, R.A. Brown: J. Comput. Phys., 1983, vol. 49, pp. 118–50

    MATH  Article  Google Scholar 

  19. J.U. Brackbill, J.S. Saltzman: J. Comput. Phys., 1982, vol. 46, pp. 342–68

    MATH  Article  MathSciNet  Google Scholar 

  20. K.A. Rathjen, L.M. Jiji: J. Heat Transfer, 1971, vol. 93, pp. 101–04

    Google Scholar 

  21. J. Crank, R.S. Gupta: J. Inst. Math. Appl., 1972, vol. 10, pp. 296–304

    MATH  Article  MathSciNet  Google Scholar 

  22. R.S. Gupta: Comput. Methods Appl. Mech. Eng., 1974, vol. 4, pp. 143–52

    Article  MATH  Google Scholar 

  23. D.R. Lynch, K. O’Neill: Int. J. Numer. Methods Eng., 1981, vol. 17, pp. 81–96

    MATH  Article  MathSciNet  Google Scholar 

  24. J. Yoo, B. Rubinsky: Numer. Heat Transfer, 1983, vol. 6, pp. 209–22

    MATH  Article  Google Scholar 

  25. J. Yoo, B. Rubinsky: Int. J. Numer. Methods Eng., 1986, vol. 23, pp. 1785–805

    MATH  Article  Google Scholar 

  26. J.M. Sullivan, D.R. Lynch: Int. J. Numer. Methods Eng., 1988, vol. 25, pp. 415–44

    MATH  Article  Google Scholar 

  27. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 163–94

    Article  Google Scholar 

  28. N. Provatas, N. Goldenfeld, J. Dantzig: Phys. Rev. Lett., 1998, vol. 80, pp. 3308–11

    Article  Google Scholar 

  29. A. Karma, W.J. Rappel: Phys. Rev., 1998, vol. E 57, pp. 4323–49

    Google Scholar 

  30. J. Sethian, J. Strain: J. Comput. Phys., 1992, vol. 98, p. 231

    MATH  Article  MathSciNet  Google Scholar 

  31. S. Chen, B. Merriman, S. Osher, P. Smereka: J. Comput. Phys., 1997, vol. 135, pp. 8–29

    MATH  Article  MathSciNet  Google Scholar 

  32. Y.T. Kim, N. Goldenfeld, J. Dantzig: Phys. Rev., 2000, vol. 62, pp. 2471–74

    Google Scholar 

  33. H. Ji, D. Chopp, J.E. Dolbow: Int. J. Numer. Methods Eng., 2002, vol. 54, pp. 1209–33

    MATH  Article  MathSciNet  Google Scholar 

  34. F. Gibou, R. Fedkiw, R. Caflisch, S. Osher: J. Sci. Comput., 2003, vol. 19, pp. 183–99

    MATH  Article  MathSciNet  Google Scholar 

  35. H.T. Hashemi, C.M. Sliepcevich: Chem. Eng. Progr. Symp. Ser., 1967, vol. 63, pp. 34–41

    Google Scholar 

  36. G. Comini, S. Del Guidice, R.W. Lewis, O.C. Zienkiewicz: Int. J. Numer. Methods Eng., 1974, vol. 8, pp. 613–24

    MATH  Article  Google Scholar 

  37. K. Morgan, R.W. Lewis, O.C. Zienkiewicz: Int. J. Numer. Methods Eng., 1978, vol. 13, pp. 1191–95

    Article  Google Scholar 

  38. E.C. Lemmon: in Numerical Methods in Heat Transfer, R.W. Lewis, K. Morgan, O.C. Zienkiewicz, eds., Wiley, New York, NY, 1981, pp. 201–13

  39. L.A. Crivelli, S.R. Idelsohn: Int. J. Numer. Methods Eng., 1986, vol. 23, pp. 99–119

    MATH  Article  MathSciNet  Google Scholar 

  40. A.J. Dalhuijsen, A. Segal: Int. J. Numer. Methods Eng., 1986, vol. 23, pp. 1807–29

    MATH  Article  Google Scholar 

  41. M. Storti, L.A. Crivelli, S.R. Idelsohn: Int. J. Numer. Methods Eng., 1987, vol. 24, pp. 375–92

    MATH  Article  Google Scholar 

  42. D. Poirier, M. Salcudean: Trans. ASME J. Heat Transfer, 1988, vol. 110, pp. 562–70

    Article  Google Scholar 

  43. D. Poirier: Master’s Thesis, University of Ottawa, Ottawa, 1986

  44. O.C. Zienkiewicz, C.J. Parekh, A.J. Wills: Rock Mech., 1973, vol. 5, pp. 65–76

    Article  Google Scholar 

  45. W.D. Rolph, K.J. Bathe: Int. J. Numer. Methods Eng., 1982, vol. 18, pp. 119–34

    MATH  Article  Google Scholar 

  46. J. Roose, O. Storrer: Int. J. Numer. Meth. Eng., 1984, vol. 20, pp. 217–25

    MATH  Article  Google Scholar 

  47. M. Salcudean, Z. Abdullah: Int. J. Numer. Methods Eng., 1988, vol. 25, pp. 445–73

    MATH  Article  Google Scholar 

  48. V.R. Voller, C.R. Swaminathan: Numer. Heat Transfer, 1991, vol. 19, pp. 175–89

    Google Scholar 

  49. N. Shamsunda, E.M. Sparrow: J. Heat Transfer, 1975, vol. 97, pp. 333–40

    Google Scholar 

  50. V. Voller, M. Cross: Int. J. Mass Heat Transfer, 1981, vol. 24, pp. 545–56

    MATH  Article  Google Scholar 

  51. V. Voller, M. Cross: Int. J. Mass Heat Transfer, 1983, vol. 26, pp. 147–50

    Article  Google Scholar 

  52. G.E. Bell, A.S. Wood: Int. J. Numer. Methods Eng., 1983, vol. 19, pp. 1583–92

    MATH  Article  Google Scholar 

  53. K.H. Tacke: Int. J. Numer. Methods Eng., 1985, vol. 21, pp. 543–54

    MATH  Article  Google Scholar 

  54. J.W. Hunter, J.R. Kuttler: J. Heat Transfer, 1989, vol. 111, pp. 239–42

    Google Scholar 

  55. Y. Cao, A. Faghri, W.S. Chang: Int. J. Mass Heat Transfer, 1989, vol. 32, pp. 1289–98

    MATH  Article  Google Scholar 

  56. C.R. Swaminathan, V.R. Voller: Metall. Trans., 1992, vol. 23B, pp. 651–64

    Google Scholar 

  57. V.R. Voller, C.R. Swaminathan, B.G. Thomas: Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 875–98

    MATH  Article  Google Scholar 

  58. C.P. Hong, T. Umeda, Y. Kimura: Metall. Trans. B, 1984, vol. 15B, pp. 91–99

    Article  Google Scholar 

  59. T.C. Tszeng, Y.T. Im, S. Kobayashi: Int. J. Mach. Tools Manufact., 1989, vol. 29, pp. 107–20

    Article  Google Scholar 

  60. Y.H. Chen, Y.T. Im, Z.H. Lee: Int. J. Mach. Tools Manufact., 1991, vol. 31, pp. 1–7

    Article  Google Scholar 

  61. Y.T. Im, Y.H. Chen, J.K. Lee, Z.H. Lee: AFS Trans., 1991, vol. 99, pp. 299–304

    Google Scholar 

  62. H. Huang, O. Gurdogan, and H.U. Akay: AFS Trans., 95, p. 243

  63. W.J. Minkowycz, E.M. Sparrow, G.E. Schneider, R.H. Pletcher: Handbook of Numerical Heat Transfer, John Wiley & Sons, New York, NY, 1988

    Google Scholar 

  64. M. Lees: Math. Comput., 1976, vol. 20, p. 516

    MathSciNet  Google Scholar 

  65. G. Comini, R.W. Lewis: Int. J. Mass Heat Transfer, 1976, vol. 19, pp. 1387–92

    MATH  Article  Google Scholar 

  66. Q.T. Pham: Int. J. Mass Heat Transfer, 1985, vol. 28, pp. 2079–84

    MATH  Article  Google Scholar 

  67. R. Lohner: Applied CFD Techniques: An Introduction Based on Finite Element Methods, John Wiley & Sons, New York, NY, 2001

    Google Scholar 

  68. C.C. Douglas, J. Hu, M. Kowarschik, U. Rude, C. Weiss: Electron. Trans. Numer. Anal., 2000, vol. 10, pp. 21–40

    MATH  MathSciNet  Google Scholar 

  69. M.M. Strout, L. Carter, J. Ferrante, B. Kreaseck: Int. J. High Perform. Comput. Applic., 2004, vol. 18, pp. 95–113

    Article  Google Scholar 

  70. S. Sellappa, S. Chatterjee: Int. J. High Perform. Comput. Applic., 2004, vol. 18, pp. 115–33

    Article  Google Scholar 

  71. E.J. Im, K. Yelick, R. Vuduc: Int. J. High Perform. Comput. Applic., 2004, vol. 18, pp. 135–58

    Article  Google Scholar 

  72. M.J. Aftosmis, M.J. Berger, and J.E. Melton: AIAA Paper, 1997, 97–0196

  73. W. Kurz D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998, 4th rev

  74. V.K. Saul’yev: Integration of Equations of Parabolic Type Equation by the Method of Net, Pergamon Press, New York, NY, 1964

    Google Scholar 

  75. L. Lapidus, G.F. Pinder: Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley, New York, NY, 1982

  76. B.K. Larkin: Math. Comput., 1964, vol. 18, pp. 196–202

    MATH  Article  MathSciNet  Google Scholar 

  77. H.Z. Barakat, J.A. Clark: J. Heat Transfer, 1966, vol. 88, pp. 421–27

    Google Scholar 

  78. V.R. Voller: Int. J. Mass Heat Transfer, 2001, vol. 44, pp. 4553–56

    MATH  Article  Google Scholar 

  79. J. Crank, P. Nicholson: Proc. Camb. Phil. Soc., 1947, vol. 43, pp. 50–64

    Article  MATH  Google Scholar 

  80. R.D. Peaceman, H.H. Rachford Jr.: J. Soc. Indust. Appl. Math., 1955, vol. 3, pp. 28–41

    MATH  Article  MathSciNet  Google Scholar 

  81. L. Shean-Lin: AICHE J., 1969, vol. 15, pp. 334–38

    Article  Google Scholar 

  82. B.F. Towler, R.Y.K. Yang: Int. J. Numer. Methods Eng., 1979, vol. 14, pp. 1021–35

    MATH  Article  Google Scholar 

  83. D.L. Roberts, M.S. Selim: Int. J. Numer. Methods Eng., 1984, vol. 20, pp. 817–44

    MATH  Article  MathSciNet  Google Scholar 

  84. J. Thibault: Numer. Heat Transfer, 1985, vol. 8, pp. 281–98

    MATH  Article  Google Scholar 

  85. P.L.T. Brian: AICHE J., 1961, vol. 7, pp. 367–70

    Article  Google Scholar 

  86. M. Moritaa, B.C. Yen: Int. J. Numer. Meth. Fluids, 2000, vol. 32, pp. 921–57

    Article  Google Scholar 

  87. M. Dehghan: Appl. Math. Comput., 2005, vol. 167, pp. 28–45

    MATH  Article  MathSciNet  Google Scholar 

  88. M. Dehghan: Appl. Math. Comput., 2003, vol. 143, pp. 375–91

    MATH  Article  MathSciNet  Google Scholar 

  89. B.G. Thomas, I.V. Samarasekera, J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 307–18

    Article  Google Scholar 

  90. B. Lally, L. Biegler, H. Henein: Metall. Trans. B, 1990, vol. 21B, pp. 761–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohallah Tavakoli.

Additional information

Manuscript submitted May 29, 2006.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11663-007-9114-6

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tavakoli, R., Davami, P. Unconditionally Stable Fully Explicit Finite Difference Solution of Solidification Problems. Metall Mater Trans B 38, 121–142 (2007). https://doi.org/10.1007/s11663-006-9017-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-9017-y

Keywords

  • Implicit Method
  • Explicit Method
  • Fourier Number
  • Time Integration Method
  • Stefan Number