Thermal Transport Regimes and Generalized Regime Diagram for High Energy Surface Melting Processes

Abstract

In this study, different thermal transport regimes in high energy surface melting processes are identified by a systematic scaling analysis. It is shown that for a very low Prandtl number, the weld pool morphology is predominantly determined by thermal diffusion, whereas advection plays only a marginal role in determining the shape and size of the molten pool. However, for relatively higher values of the Prandtl number, advective transport in the molten pool may significantly affect the pool shape and size. The criteria, which delineate these two regimes, are estimated by detailed scaling arguments. Based on the scaling analysis, it is demonstrated that turbulence in the molten pool affects the momentum and thermal transport in a distinctive manner. There exists a transport regime in which turbulence may significantly affect the momentum transport in the molten pool, whereas the thermal transport becomes marginally affected by the melt-pool turbulence. A regime diagram is constructed based on the scaling arguments, in which the different thermal transport regimes are clearly indicated for typical high energy surface melting processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Chan C., Mazumdar J., Chen M.M. (1984) Metall. Trans. A 15A:2175–84

    Google Scholar 

  2. 2.

    Srinivasan J., Basu B. (1986) Int. J. Heat Mass Transfer 29:563–72

    MATH  Article  Google Scholar 

  3. 3.

    He X., Mordike B.L., Pirch N., Kreutz E.W. (1995) Lasers Eng. 4:291–316

    MATH  Google Scholar 

  4. 4.

    Mohanraj P., Sarkar S., Chakraborty S., Phanikumar G., Dutta P., Chattopadhyay K. (2002) Int. J. Heat Fluid Flow 23:298–307

    Article  Google Scholar 

  5. 5.

    Sarkar S., Mohanraj P., Chakraborty S., Dutta P. (2002) Num. Heat Transfer A 42:307–26

    Article  Google Scholar 

  6. 6.

    Sarkar S., Chakraborty S., Dutta P. (2001) Lasers Eng. 11:57–75

    Google Scholar 

  7. 7.

    Atthey D.R. (1980) J. Fluid Mech. 98:787–801

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Joshi Y., Dutta P., Espinosa D., Schupp P. (1997) Trans. ASME, J. Heat Transfer 119:164–71

    Google Scholar 

  9. 9.

    Chatterjee D., Sarkar S., Chakraborty S. (2006) Num. Heat Transfer A 49:905–22

    Article  Google Scholar 

  10. 10.

    Chakraborty S., Sarkar S., Dutta P. (2002) Sci. Technol. Welding Joining 7:88–94

    Article  Google Scholar 

  11. 11.

    Chakraborty N., Chakraborty S. (2006) . Eur. Phys. J., Appl. Phys. 36:71–89

    Article  Google Scholar 

  12. 12.

    Chatterjee D., Chakraborty N., Chakraborty S. (2006) J. Laser Applic. 18:138–50

    Article  Google Scholar 

  13. 13.

    Chatterjee D., Chakraborty S. (2006) Metall. Mater. Trans. B 36B:143–45

    Google Scholar 

  14. 14.

    Chakraborty N., Chakraborty S. (2005) Trans. ASME, J. Heat Transfer 127:848–62

    Article  Google Scholar 

  15. 15.

    Chakraborty N., Chatterjee D., Chakraborty S. (2004) J. Appl. Phys. 96:4569–77

    Article  Google Scholar 

  16. 16.

    Chakraborty N., Chakraborty S., Dutta P. (2004) Num. Heat Transfer A 45:391–413

    Google Scholar 

  17. 17.

    Chakraborty N., Chakraborty S., Dutta P. (2003) Int. J. Num. Methods Heat Fluid Flow 13:7–30

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Additional information

Manuscript submitted Septemper 14, 2006

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chakraborty, N., Chakraborty, S. Thermal Transport Regimes and Generalized Regime Diagram for High Energy Surface Melting Processes. Metall Mater Trans B 38, 143–147 (2007). https://doi.org/10.1007/s11663-006-9000-7

Download citation

Keywords

  • Molten Pool
  • Thermal Transport
  • Surface Melting
  • Molten Material
  • Marangoni Number