Skip to main content
Log in

A mesoscale cellular automaton model for curvature-driven grain growth

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A two-dimensional mesoscale cellular automaton algorithm is developed to simulate curvature-driven grain growth during materials processing. In the present model, a deterministic switch rule for the grain growth is adopted, and thus the kinetics of the grain growth can be simulated quantitatively. In addition, the grain-boundary energy is dependent on the misorientation between neighboring grains. At mesoscale, the simulations show that each grain displays a unique growth behavior. The growth behavior of individual grains can be categorized into four types: (1) grains with monotonically increasing equivalent diameters, (2) grains that first grow and then begin to shrink, (3) grains with almost constant diameters, and (4) grains that decrease in size. Furthermore, an oscillation grain-growth behavior is observed in the present mesoscale cellular automaton simulations. This simulated individual grain-growth behavior has not been reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, United Kingdom, 1975, pp. 179–82.

    Google Scholar 

  2. C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187–94.

    Article  CAS  Google Scholar 

  3. E. Anelli: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 440–49.

    CAS  Google Scholar 

  4. P.D. Hodgson and R.K. Gibbs: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1329–38.

    CAS  Google Scholar 

  5. M.P. Anderson, G.S. Grest, and D.J. Srolovitz: Phil. Mag. B, 1989, vol. 59B, pp. 293–329.

    Google Scholar 

  6. M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783–91.

    Article  CAS  Google Scholar 

  7. A.D. Rollett, D.J. Srolovitz, and M.P. Anderson: Acta Metall., 1989, vol. 37, pp. 1227–40.

    Article  CAS  Google Scholar 

  8. D.J. Srolovitz, M.P. Anderson, P.S. Sahni and G.S. Grest: Acta Metall., 1984, vol. 32, pp. 1429–38.

    Article  CAS  Google Scholar 

  9. D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest: Acta Metall., 1985, vol. 33, pp. 509–20.

    Article  Google Scholar 

  10. A. Soares, A.C. Ferro, and M.A. Forters: Scripta Metall., 1985, vol. 19, pp. 1491–96.

    Article  CAS  Google Scholar 

  11. H.J. Frost, C.V. Thompson, C.L. Howe, and J. Whang: Scripta Metall., 1988, vol. 22, pp. 65–70.

    Article  CAS  Google Scholar 

  12. K. Kawasaki, T. Nagai, and K. Nakashima: Phil. Mag. B, 1989, vol. 60B, pp. 399–421.

    Google Scholar 

  13. F.J. Humphreys: Scripta Metall. Mater., 1992, vol. 27, pp. 1557–62.

    Article  CAS  Google Scholar 

  14. K. Fuchizaki, T. Kusaba, and K. Kawasaki: Phil. Mag. B, 1995, vol. 71B, pp. 333–57.

    Google Scholar 

  15. A.C.F. Cocks and S.P.A. Gill: Acta Mater., 1996, vol. 44, pp. 4765–75.

    Article  CAS  Google Scholar 

  16. D. Weygand and Y. Brechet: Phil. Mag. B, 1998, vol. 78B, pp. 329–52.

    Google Scholar 

  17. D. Weygand and Y. Brechet: Phil. Mag. B, 1999, vol. 79B, pp. 703–16.

    Article  Google Scholar 

  18. J. Geiger, A. Roosz, and P. Barkoczy: Acta Mater., 2001, vol. 49, pp. 623–29.

    Article  CAS  Google Scholar 

  19. V. Tikare, E.A. Holm, D. Fan, and L.Q. Chen: Acta Mater., 1999, vol. 47, pp. 363–71.

    Article  CAS  Google Scholar 

  20. A.P. Kuprat: SIAM J. Sci. Comput., 2000, vol. 22, pp. 535–600.

    Article  Google Scholar 

  21. M.C. Demirel, A.P. Kuprat, D.C. George, and A.D. Rollett: Phys. Rev. Lett., 2003, vol. 90, pp. 016106-1–4.

    Article  Google Scholar 

  22. D. Raabe: Acta Mater., 2000, vol. 48, pp. 1617–82.

    Article  CAS  Google Scholar 

  23. D. Weygand, Y. Brechet, and J. Lepinoux: Adv. Eng. Mater., 2001, vol. 3, pp. 67–71.

    Article  CAS  Google Scholar 

  24. J.E. Burke and D. Turnbull: Prog. Met. Phys., 1952, vol. 3, pp. 220–92.

    Article  CAS  Google Scholar 

  25. W.W. Mullins: J. Appl. Phys., 1956, vol. 27, pp. 900–04.

    Article  Google Scholar 

  26. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.

    Article  CAS  Google Scholar 

  27. R. Sasikumar and R. Sreenivisan: Acta Metall., 1994, vol. 42, pp. 2381–86.

    Article  CAS  Google Scholar 

  28. L. Nastac: Acta Metall., 1999, vol. 47, pp. 4253–62.

    CAS  Google Scholar 

  29. A. Jacot and M. Rappaz: Acta Mater., 2002, vol. 50, pp. 1909–26.

    Article  CAS  Google Scholar 

  30. K. Kremeyer: J. Comput. Phys., 1998, vol. 142, pp. 243–62.

    Article  CAS  Google Scholar 

  31. Y.J. Lan, D.Z. Li, C.J. Huang, and Y.Y. Li: Modell. Simul. Mater. Sci. Eng. 2004, vol. 12, pp. 719–29.

    Article  CAS  Google Scholar 

  32. D. Mattissen, A. Wærø, D.A. Molodov, L.S. Shvindlerman, and G. Gottstein: J. Microsc., 2004, vol. 213, pp. 257–61.

    Article  CAS  Google Scholar 

  33. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton: Acta Mater., 2002, vol. 50, pp. 2491–2502.

    Article  CAS  Google Scholar 

  34. K.G.F. Janssens: Modell. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 157–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Y.J., Li, D.Z. & Li, Y.Y. A mesoscale cellular automaton model for curvature-driven grain growth. Metall Mater Trans B 37, 119–129 (2006). https://doi.org/10.1007/s11663-006-0091-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0091-y

Keywords

Navigation