Skip to main content
Log in

Oxide skin strength on molten aluminum

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxide skin strength on molten aluminum has been measured as a function of temperature for pure aluminum and some aluminum alloys. The measured values fit well to previous published data of surface tension of liquid aluminum, σ lg , combined with the wetting angle, ϑ, and the mechanical strength of the oxide. It is assumed that the work per area needed to stretch and rupture the oxide skin is a sum of the interfacial tensions and tensile strength of oxide, times oxide thickness:

$$\begin{gathered} W = \sigma _{sg} + \sigma _{lg} - \sigma _{sl} + \tau \cdot \delta \hfill \\ = \sigma _{lg} (1 + \cos \theta ) + \tau \cdot \delta \hfill \\ \end{gathered} $$

The work per area calculated from previous published data fits reasonably well with the oxide skin strength measurements presented here. It is found that above about 750 °C, the oxide skin strength increases with increasing temperature. The effect of sodium addition to industrially pure aluminum has also been investigated. Addition of 68 ppm sodium increases the oxide skin strength by 52 pct. Addition of 0.3 pct magnesium to A1-11Si reduces the oxide skin strength by 30 to 35 pct below 620 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.A. Engh: Principles of Metal Refining, Oxford Science Publishers, Oxford University Press, Oxford, United Kingdom, 1992.

    Google Scholar 

  2. S. Benum: Light Met., 1999, pp. 737–42.

  3. J. Campbell: Castings, 2nd ed., Elsevier, Oxford, United Kingdom, 2003.

    Google Scholar 

  4. W. Kahl and E. Fromm: Metall. Trans. B, 1985, vol. 16B, pp. 47–51.

    CAS  Google Scholar 

  5. W. Thiele: Aluminum, 1962, vol. 38 (12), pp. 707–15.

    CAS  Google Scholar 

  6. S. Freti, J.-D. Bornand, and K. Buxmann: Light Met., 1982, pp. 1003–16

  7. C.N. Cochran, D.L. Belitskus, and D.L. Kinesz: Metall. Trans. B, 1977, vol. 8B, pp. 323–32.

    CAS  Google Scholar 

  8. L. Zhong: Proc. Int. Conf. on Interfaces in Metal-Ceramics Composites, TMS Annual Meeting, Anaheim, CA, Feb. 1990, TMS, Warrendale, PA, 1990, pp. 213–26.

    Google Scholar 

  9. Quincke: Ann. Phys., 1897, vol. 61, pp. 4–137, cited in Ref. 12.

    Google Scholar 

  10. W. Jung: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 51–55.

    Article  CAS  Google Scholar 

  11. S.M. Wolf, A.P. Levitt, and J. Brown: Chem. Eng. Progr., 1966, vol. 62 (3), pp. 74–78.

    CAS  Google Scholar 

  12. CRC Handbook of Chemistry and Physics, 71st ed., CRC Press, Boston, MA, 1990–91.

  13. B. Keene: Int. Mater. Rev., 1993, vol. 38 (4), pp. 157–92.

    CAS  Google Scholar 

  14. L. Goumiri and J.C. Joud: Acta Metall., 1982, vol. 30, pp. 1397–405.

    Article  CAS  Google Scholar 

  15. Ceramic Fabrication Processes, W.D. Kingery, ed., The MIT Press, Cambridge, MA, 1956, pp. 213–28.

    Google Scholar 

  16. C. Wagner: Z. Phys. Chem., 1933, vol. B21.

  17. W. Kahl: Ph.D. Thesis, University of Stuttgart, Deutchland, Germany, 1983.

    Google Scholar 

  18. G.K. Sigworth: Light Met., 2000, pp. 773–78.

  19. G.L. Squires: Practical Physics, 3rd ed., Cambridge University Press, Cambridge, United Kingdom. 1985.

    Google Scholar 

  20. H. John and H. Hausner: J. Mater. Sci. Lett., Letter 5, 1986, pp. 549–51.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syvertsen, M. Oxide skin strength on molten aluminum. Metall Mater Trans B 37, 495–504 (2006). https://doi.org/10.1007/s11663-006-0033-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0033-8

Keywords

Navigation