Skip to main content
Log in

Inclusion removal by bubble flotation in a continuous casting mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fundamentally based computational models are developed and applied to quantify the removal of inclusions by bubbles during the continuous casting of steel. First, the attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. Then, the turbulent fluid flow in a typical continuous casting mold, trajectories of bubbles, and their path length in the mold are calculated. The change in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. In addition to quantifying inclusion removal for many different cases, the results are important to evaluate the significance of different inclusion-removal mechanisms. The modeling approach presented here is a powerful tool for investigating multiscale phenomena in steelmaking and casting operations to learn how to optimize conditions to lower defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Pan, K. Uemura, and S. Koyama: Tetsu to Hagane, 1992, vol. 78 (8), pp. 87–94.

    Google Scholar 

  2. L. Wang, H.-G. Lee, and P. Hayes: Steel Res., 1995, vol. 66 (7), pp. 279–86.

    CAS  Google Scholar 

  3. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45 (2), pp. 59–82.

    Article  CAS  Google Scholar 

  4. L. Zhang: Modell. Simul. Mater. Sci. Eng., 2000, vol. 8 (4), pp. 463–76.

    Article  Google Scholar 

  5. L. Zhang and S. Taniguchi: Fluid flow and particle removal by bubble flotation in a mechanically stirred vessel. Materials Processing in the Computer Age III, 2000, pp. 111–22.

  6. L. Zhang and S. Taniguchi: Ironmaking Steelmaking, 2002, vol. 29 (5), pp. 326–36.

    Article  Google Scholar 

  7. G. Abbel, W. Damen, G. de Dendt, and W. Tiekink: ISIJ, 1996, vol. 36, pp. S219–22.

    Google Scholar 

  8. W.H. Emling, T.A. Waugaman, S.L. Feldbauer, and A.W. Cramb: in Steelmaking Conference Proceedings, vol. 77, Chicago, IL, April 13–16, 1997, ISS, Warrendale, PA, 1994, pp. 371–79.

    Google Scholar 

  9. L. Kiriha, H. Tosawa, and K. Sorimachi: VCAMP-ISIJ, 2000, vol. 13, p. 120.

    Google Scholar 

  10. B.G. Thomas, A. Denissov, and H. Bai: in Steelmaking Conference Proceedings, vol. 80, Chicago, IL, April 13–16, 1997, ISS, Warrendale, PA, 1997, pp. 375–84.

    Google Scholar 

  11. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: in Steelmaking Conference Proceedings, vol. 77, ISS, Warrendale, PA, 1994, pp. 381–88.

    Google Scholar 

  12. N. Kasai, H. Mizukami, and A. Mutou: Tetsu to Hagane, 2003, vol. 89 (11), pp. 1120–27.

    CAS  Google Scholar 

  13. L. Zhang, B. Rietow, K. Eakin, and B.G. Thomas: ISIJ Inter., 2006, vol. 46, in press.

  14. Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43 (10), pp. 1548–55.

    CAS  Google Scholar 

  15. R. Gass, H. Knoepke, J. Moscoe, R. Shah, J. Beck, J. Dzierzawski, and P.E. Ponikvar: in ISSTech2003 Conference Proceedings, ISS, Warrendale, PA, 2003, pp. 3–18.

    Google Scholar 

  16. P. Rocabois, J.-N. Pontoire, V. Delville, and I. Marolleau: in ISSTech2003 Conference Proceedings, ISS, Warrendale, PA, 2003, pp. 995–1006.

    Google Scholar 

  17. H. Yin and H.T. Tsai: in ISSTech2003 Conference Proceedings, ISS, Warrendale, PA, 2003, pp. 217–26.

    Google Scholar 

  18. H.J. Schulze: in Developments in Mineral Processing, vol. 4, D.W. Fuerstenau, ed., Elsevier, 1984, pp. 65–66.

  19. L. Wang, H.-G. Lee, and P. Hayes: ISIJ Int., 1996, vol. 36 (1), pp. 17–24.

    CAS  Google Scholar 

  20. X. Zheng, P. Hayes, and H.-G. Lee: ISIJ Int., 1997, vol. 37 (11), pp. 1091–97.

    CAS  Google Scholar 

  21. N. Ahmed and G.J. Jamson: Miner. Process. Extr. Metall. Rev., 1989, vol. 5, pp. 77–99.

    Google Scholar 

  22. A.G. Szekely: Metall. Trans. B, 1976, vol. 7B (3), pp. 259–70.

    CAS  Google Scholar 

  23. K. Okumura, M. Kitazawa, N. Hakamada, M. Hirasawa, M. Sano, and K. Mori: ISIJ Inter., 1995, vol. 35 (7), pp. 832–37.

    CAS  Google Scholar 

  24. P.E. Anagbo and J.K. Brimacombe: Metall. Mater. Trans., 1990, vol. 21B, pp. 637–48.

    CAS  Google Scholar 

  25. Y. Miki, B.G. Thomas, A. Denissov, and Y. Shimada: Iron and Steelmaker, 1997, vol. 24 (8), pp. 31–38.

    CAS  Google Scholar 

  26. Y. Ye and J.D. Miller: Int. J. Miner. Process., 1989, vol. 25 (3–4), pp. 199–219.

    Article  CAS  Google Scholar 

  27. H.J. Schulze: Miner. Process. Extractive Metall. Rev., 1989, vol. 5, pp. 43–76.

    Google Scholar 

  28. Y. Xie, S. Orsten, and F. Oeters: ISIJ Int., 1992, vol. 32 (1), pp. 66–75.

    CAS  Google Scholar 

  29. R.M. Wellek, A.K. Agrawal, and A.H.P. Skelland: AIChE J., 1966, vol. 12 (5), pp. 854–62.

    Article  CAS  Google Scholar 

  30. Y. Sahai and R.I.L. Guthrie: Metall. Trans. B., vol. 13B (2), pp. 193–202.

  31. H. Tokunaga, M. Iguchi, and H. Tatemichi: Metall. Mater. Trans. B, 1999, vol. 30B (1), pp. 61–66.

    Article  CAS  Google Scholar 

  32. M. Iguchi, H. Tokunaga, and H. Tatemichi: Metall. Mater. Trans. B, 1999, vol. 28B (6), pp. 1053–61.

    Google Scholar 

  33. H. Bai: Ph.D. Thesis, University of Illinois, 2000.

  34. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B (4), pp. 702–22.

    Google Scholar 

  35. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B (2), pp. 253–67.

    CAS  Google Scholar 

  36. W. Damen, G. Abbel and G. de Dendt: Revue de Metallurgie CIT, 1997, vol. 94 (6), pp. 745–50.

    CAS  Google Scholar 

  37. M. Sevik and S.H. Park: J. Fluids Eng. Trans. AIME, 1973, pp. 53–60.

  38. S. Yokoya, S. Takagi, K. Tada, M. Iguchi, K. Marukawa, and S. Hara: ISIJ Int., 2001, vol. 41 (10), pp. 1201–07.

    CAS  Google Scholar 

  39. S. Yokoya, S. Takagi, S. Ootani, M. Iguchi, and K. Marukawa: ISIJ Int., 2001, vol. 41 (10), pp. 1208–14.

    CAS  Google Scholar 

  40. S. Yokoya, S. Takagi, M. Kaneko, M. Iguchi, K. Marukawa, and S. Hara: ISIJ Int., 2001, vol. 41 (10), pp. 1215–20.

    CAS  Google Scholar 

  41. S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa, and S. Hara: ISIJ Int., 2001, vol. 41 (Suppl), pp. S47–51.

    CAS  Google Scholar 

  42. FLUENT 6.1 Manual. Fluent Inc., Lebanon, NH, 2003.

  43. J. Aoki, L. Zhang, and B.G. Thomas: in ICS 2005: The 3rd International Congress on the Science and Technology of Steelmaking, AIST, Warrendale, PA, 2005, pp. 319–22.

    Google Scholar 

  44. FLUENT 5.1. Fluent Inc., Lebanon, NH, 2000.

  45. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops and Particles. Academic Press, Inc., New York, NY, 1978.

    Google Scholar 

  46. J. Aoki: Master Thesis, University of Illinois at Urbana-Champaign, 2006.

  47. L. Zhang and B.G. Thomas: in Proceedings of XXIV Steelmaking National Symposium, Mexico, 2003.

  48. B.G. Thomas and L. Zhang: ISIJ Inter., 2001, vol. 41 (10), pp. 1181–93.

    CAS  Google Scholar 

  49. L. Zhang and B.G. Thomas: Particle Motion with Random Walk Model in k-e Two-Equation Model Compared with LES Simulation. University of Illinois at Urbana-Champaign, Report No. CCC200501, 2005.

  50. Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B., 2004, vol. 35B (4), pp. 703–14.

    CAS  Google Scholar 

  51. M. Yemmou, M.A.A. Azouni, and P. Casses: J. Cryst. Growth, 1993, vol. 128 (4), pp. 1130–36.

    CAS  Google Scholar 

  52. J.K. Kim and P.K. Rohatgi: Metall. Mater. Trans. B, 1998, vol. 29A (1), pp. 351–75.

    Article  CAS  Google Scholar 

  53. D.M. Stefanescu and A.V. Catalina: ISIJ Inter., 1998, vol. 38 (5), pp. 503–05.

    CAS  Google Scholar 

  54. B.G. Thomas, L. Zhang, and T. Shi: Effect of Argon Gas Distribution on Fluid Flow in the Mold Using Time-Averaged k-e Models, University of Illinois at Urbana-Champaign, Report No. CCC200105, 2001.

  55. L. Zhang and B.G. Thomas: ISIJ Inter., 2003, vol. 43 (3), pp. 271–91.

    CAS  Google Scholar 

  56. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1143–59.

    CAS  Google Scholar 

  57. L. Zhang, B.G. Thomas, K. Cai, L. Zhu and J. Cui: in ISSTech 2003, ISS, Warrendale, PA, 2003, pp. 141–56.

    Google Scholar 

  58. H. Schubert: Int. J. Miner. Process., 1999, vol. 56, pp. 257–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Aoki, J. & Thomas, B.G. Inclusion removal by bubble flotation in a continuous casting mold. Metall Mater Trans B 37, 361–379 (2006). https://doi.org/10.1007/s11663-006-0021-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0021-z

Keywords

Navigation