Skip to main content
Log in

Hydration of mechanically activated granulated blast furnace slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Ground granulated blast furnace slag (GGBFS) is known to possess latent hydraulic activity, i.e., it shows cementitious properties when in contact with water over a long period of time. Results are presented in this article to show that, in sharp contrast to published literature on the hydration of neat GGBFS, the complete hydration of slag is possible in a short time (days), even without a chemical activator. This is achieved if the slag used for hydration is mechanically activated, using an attrition mill. The nature of the hydration product of the mechanically activated slag depends not only on the initial specific surface area (SSA) of the slag but also on the surface activation, as manifested by the change in the zeta potential (ξ) of the slag during the milling process. Depending upon the SSA and the ξ, the hydration product changed from nonreacted slag with high porosity (slag SSA < 0.3 m2/g, ξ>−29 mV) to hydrated slag with a compact structure (SSA=0.3 to 0.4 m2/g, ξ=−29 to −31 mV), and, finally, to fully hydrated slag with high porosity (SSA>0.4 m2/g, ξ ∼ 26 mV). Unlike the poorly crystalline hydration product formed by the nonactivated slag, even after prolonged hydration for years, the hydration product of mechanically activated slag was crystalline in nature. The crystallinity of the product improved as the duration of the mechanical activation increased. The calcium-silicate-hydrate (C-S-H) phases present in the slag hydration product, characterized by a Ca/Si ratio of 0.7 to 1.5, were similar to those found for the hydraulic cement binder, except for the presence of Mg and Al as impurities. In addition, the presence of a di-calcium-silicate-hydrate phase (α-C2SH), which normally forms under hydrothermal conditions, and a Ca-deficient and Si-Al-rich phase (average Ca/Si mole ratio < 0.1 and Si/Al ∼ 3) is indicated, especially in the hydration product of slag that was activated for a longer time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ground Granulated Blast Furnace Slag as a Cementitious Constituent of Concrete, ACI Manual of Concrete Practice, Part I, ACI226.1R-87, American Concrete Institute, Detroit, MI, 1987, pp. 1–16.

  2. H. Uchigawa: Proc. 8th Int. Congr. on the Chemistry of Cement, Abla SraJiec, ed., ABCP Rio de Janeiro, Brazil, 1986, vol. 3, pp. 249–80.

    Google Scholar 

  3. P.K. Mehta: Proc. 3rd Int. Conf. on Fly Ash, Silica Fume, and Natural Pozzolans in Concrete, Tronheim, Norway, 1989, SP-114, V.M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1989, pp. 1–43.

    Google Scholar 

  4. H.F.W. Taylor: Cement Chemistry, 2nd ed., Thomas Telford Publications, London, 1998, p. 429.

    Google Scholar 

  5. S. Song and H.M. Jennings: Cem. Concr. Res., 1999, vol. 29, 159–70.

    Article  CAS  Google Scholar 

  6. I.G. Richardson: Cem. Concr. Compos., 2000, vol. 22, pp. 97–113.

    Article  CAS  Google Scholar 

  7. A.O. Pudon: J. Soc. Chem. Ind., 1940, vol. 59, pp. 191–202.

    Google Scholar 

  8. P.S. Parameswarn and A.K. Chatterjee: Proc. 8th Int. Congr. on the Chemistry of Cements, Abla SraJiec, ed., ABCP Rio de Janeiro, Brazil, 1986, vol. 4, pp. 86–91.

    Google Scholar 

  9. I.G. Richardson, A.R. Brough, G.W. Groves, and C.M. Dobson: Cem. Concr. Res., 1994, vol. 24, pp. 813–29.

    Article  CAS  Google Scholar 

  10. S.D. Wang, X.-C. Pu, K.L. Scrivener, and K.L. Pratt: Adv. Cem. Res., 1995, vol. 7, pp. 93–102.

    CAS  Google Scholar 

  11. D.M. Roy: Cem. Concr. Res., 1999, vol. 29, pp. 249–54.

    Article  CAS  Google Scholar 

  12. C. Shi and J. Qian: Resources, Conserv, and Recycling, 2000, vol. 29, pp. 195–207.

    Article  Google Scholar 

  13. S. Song, D. Sohn, H.M. Jennings, and T.O. Mason: J. Mater. Sci., 2000, vol. 35, pp. 249–57.

    Article  CAS  Google Scholar 

  14. A.R. Brough and A. Atkinson: Cem. Concr. Res. 2002, vol. 32, pp. 865–79.

    Article  CAS  Google Scholar 

  15. D. Krizan and B. Zivanovic: Cem. Concr. Res., 2002, vol. 32, pp. 1181–88.

    Article  CAS  Google Scholar 

  16. L. Dongxu, X. Zhongzi, L. Zhimin, P. Zhihua, and C. Lin: Cem. Concr. Res., 2002, vol. 32, pp. 1145–52.

    Article  Google Scholar 

  17. J.J. Chang: Cem. Concr. Res., 2003, vol. 33, pp. 1005–11.

    Article  CAS  Google Scholar 

  18. S.D. Wang and K.L. Scrivener: Cem. Concr. Res., 2003, vol. 33, pp. 769–74.

    Article  CAS  Google Scholar 

  19. J.J. Escalante-Garcý, A.V. Gorokhovsky, G. Mendoza, and A.F. Fuentes: Cem. Concr. Res., 2003, vol. 33, pp. 1–8.

    Article  Google Scholar 

  20. F. Puertas and A. Fernandez-Jimeenez: Cem. Concr. Compos., 2003, vol. 25, pp. 287–92.

    Article  CAS  Google Scholar 

  21. M.A. Cincotto, A.A. Melo, and W.L. Repette: Proc. 11th Int. Congr. on the Chemistry of Cement (ICCC), Cement’s Contribution to the Development in the 21st Century, G. Grieve, and G. Owens, eds., The Cement and Concrete Institute of South Africa, Durban, Republic of South Africa, 2003, pp. 1878–88.

    Google Scholar 

  22. F. Puertas, A. Fernandez-Jimenez, and M.T. Blanco-Varela: Cem. Concr. Res., 2004, vol. 34, pp. 139–48.

    Article  CAS  Google Scholar 

  23. G. Kolb and K. Ott: EuroCoal, 1992, vol. 4, pp. 199–214.

    Google Scholar 

  24. P.C. Kapur, T.W. Healy, P.J. Scales, D.V. Boger, and D. Wilson: Int. J. Miner. Processing, 1996, vol. 47, pp. 141–52.

    Article  CAS  Google Scholar 

  25. H. Berthiaux, D. Heitzmann, and J.A. Dodds: Int. J. Miner. Processing, 1996, vol. 44 (5), p. 653.

    Article  Google Scholar 

  26. S. Mende, F. Stenger, W. Peukert, and J. Schwedes: Powder Technol., 2003, vol. 132, pp. 64–73.

    CAS  Google Scholar 

  27. JCPDS X-ray Powder Diffraction File No. (35-0755) for Gehlenite (2CaO·Al2O3SiO2).

  28. K. Garbev, L. Black, G. Beuchle, and P. Stemmermann: Wasser-und Geotechnologie Jahrgang, 2002, vol. 2, pp. 19–30.

    Google Scholar 

  29. K. Garbev: Ph.D. Thesis, Institut fur Technische Chemie von der Fakultat fur Chemie und Geowissenschaften der Ruprecht-Karls-Universitat, Hiedelberg, Germany, 2004.

    Google Scholar 

  30. I.G. Richardson: Cem. Concr. Res., 2004, vol. 34, pp. 1733–77.

    Article  CAS  Google Scholar 

  31. A.Z. Juhasz and L. Opoczky: Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles, Ellis Horwood Limited, Chichester, United Kingdom, 1994, p. 234.

    Google Scholar 

  32. V.V. Boldyrev and K. Tkacova: J. Mater. Synth. Processing, 2000, vol. 8 (3–4), pp. 121–32.

    Article  CAS  Google Scholar 

  33. U. Steinike and K. Tkacova: J. Mater. Synth. Processing, 2000, vol. 8 (3–4), pp. 197–203.

    Article  CAS  Google Scholar 

  34. R.J. Hunter: Zeta Potential in Colloidal Science, Academic Press, New York, NY, 1981.

    Google Scholar 

  35. H.M. Jennings, J.J. Thomas, D. Rothstein, and J.J. Chen: in Handbook of Porous Solids, F. Schuth, K. Sing, J. Weitkamp, H.M. Jennings, J.J. Thomas, J.J. Chen, and D. Rothstein, eds., Wiley-VCH, Weinheim, Germany, 2002, vol. 5, pp. 2971–3028.

    Google Scholar 

  36. R.A. Olson and H.M. Jennings: Cem. Concr. Res., 2001, vol. 31, pp. 351–56.

    Article  CAS  Google Scholar 

  37. J.I. Escalante-Garcia: Cem. Concr. Res., 2003, vol. 33, pp. 1883–88.

    Article  CAS  Google Scholar 

  38. F. Splittgerber and A. Mueller: Proc. 11th Int. Congr. on the Chemistry of Cement (ICCC), Cement’s Contribution to the Development in the 21st Century, May 11–16, 2003, G. Grieve and G. Owens, eds., The Cement and Concrete Institute of South Africa, Durban, Republic of South Africa, 2003, pp. 1281–91.

    Google Scholar 

  39. J.F. Chen, J.J. Thomas, H.F.W. Taylor, and H.M. Jennings: Cem. Concr. Res., 2004, vol. 34, pp. 1499–1519.

    Article  CAS  Google Scholar 

  40. JCPDS X-ray Powder Diffraction File for C-S-H gel or Ca1.5SiO3.5·xH2O [33-306], C-S-H(I) or CaO·SiO2·H2O [34-0002], C-S-H(II) or Ca2SiO4·3H2O [29-0374], Tobermorite (Ca5Si6(O, OH)18·xH2O, x=5 or 6) [29-331/45-1480]. α-C2SH or Ca2SiO4·H2O [29-0373]. Calcite (CaCO3) [47-1743], Hydrotalcite (Mg6Al2CO3(OH)16·4H2O) [41-1428].

  41. S.D. Wang and K.L. Scrivener: Cem. Concr. Res., 1995, vol. 25 (3), pp. 561–71.

    Article  CAS  Google Scholar 

  42. I.G. Richardson and G.W. Groves: J. Mater. Sci., 1992, vol. 27, pp. 6204–12.

    Article  CAS  Google Scholar 

  43. J.M. Richardson, J.J. Biernacki, P.E. Stutzman and D.P. Bentz: J. Am. Ceram. Soc., 2002, vol. 85 (4), pp. 947–53.

    Article  CAS  Google Scholar 

  44. I.G. Richardson: Structure and Performance of Cements, 2nd ed., J. Bonsted and P. Barnes, eds., Spon Press, London, 2002, pp. 500–56.

    Google Scholar 

  45. M.M. Rahman, S. Nagasaki, and S. Tanaka: J. Nucl. Sci. Technol., 2001, vol. 38 (7), pp. 533–41.

    Article  CAS  Google Scholar 

  46. M.D. Anderson, H.J. Jakobsen, and J. Skibsted: Inorg. Chem., 2003, vol. 42, pp. 2280–87.

    Article  CAS  Google Scholar 

  47. André Nonat: Cem. Concr. Res., 2004, vol. 34, pp. 1521–28.

    Article  CAS  Google Scholar 

  48. S. Shaw, S.M. Clark, and C.M.B. Henderson: Chem. Geol., 2000, vol. 167, pp. 129–40.

    Article  CAS  Google Scholar 

  49. S. Shaw, C. Michael B. Henderson, and S.M. Clark: Am. Mineralogist, 2002, vol. 87, pp. 533–41.

    CAS  Google Scholar 

  50. J.J. Thomas, J.J. Chen, H.M. Jennings, and D.A. Neumann: Chem. Mater., 2003, vol. 15, pp. 3813–17.

    Article  CAS  Google Scholar 

  51. J. Jernejcic, N. Vene, and A. Zajc: Thermochem. Acta, 1977, vol. 20, pp. 237–47.

    Article  CAS  Google Scholar 

  52. R.E. Marsh: Acta Crystallogr., 1994, vol. C50, pp. 996–97.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Kumar, S., Badjena, S. et al. Hydration of mechanically activated granulated blast furnace slag. Metall Mater Trans B 36, 873–883 (2005). https://doi.org/10.1007/s11663-005-0089-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0089-x

Keywords

Navigation