Skip to main content
Log in

Rate of reduction of ore-carbon composites: Part I. Determination of intrinsic rate constants

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A process for ironmaking was proposed consisting of the combination of a rotary hearth furnace and a bath smelter employing wood charcoal as reductant and energy source. This article examines reactions in composites of iron oxides and carbon at elevated temperatures in conditions developed to minimize the influence of mass and heat transfer to the overall rates. A combined reaction model considering the steps of carbon oxidation and reduction of the iron oxides was developed allowing the measurement of rate constants for carbon oxidation and wustite reduction to be used in a comprehensive pellet model developed in Part II of the current article. This analysis showed that wustite reduction can have a significant effect on the overall rate of reduction in composites at high temperatures or in the presence of large excess of carbon. Rate constants measured for graphite showed that graphite is as reactive as wood charcoal, possibly due to the catalysis of graphite or its higher temperature dependence. The poisoning of carbon surfaces by CO is less significant than anticipated from works of previous authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Fruehan: Metall. Trans. B, 1977, vol. 8B, pp. 279–86.

    CAS  Google Scholar 

  2. Y.K. Rao: Metall. Trans., 1971, vol. 2, pp. 1439–47.

    CAS  Google Scholar 

  3. S. Sun and W.-K. Lu: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 1062–69.

    CAS  Google Scholar 

  4. J. Gadsby et al.: Proc. R. Soc., 1948, vol. A193, pp. 357–76.

    CAS  Google Scholar 

  5. A.E. Reif: J. Phys. Chem., 1952, vol. 56, pp. 785–88.

    Article  CAS  Google Scholar 

  6. S.R. Story: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1997.

    Google Scholar 

  7. E.T. Turkdogan and J.V. Vinters: Metall. Trans., 1972, vol. 3, pp. 1561–74.

    CAS  Google Scholar 

  8. E.T. Turkdogan, R.G. Olsson, and J.V. Vinters: Carbon, 1970, vol. 8, pp. 545–64.

    Article  CAS  Google Scholar 

  9. P.L. Walker, F. Rusinko, and L.G. Austin: Adv. Catalysis, 1959, vol. 11, pp. 133–221.

    CAS  Google Scholar 

  10. O. Kubaschewski, E.L. Evans, and C.B. Alcock: Metallurgical Thermochemistry, Pergamon Press, Oxford, UK, 1976.

    Google Scholar 

  11. L.S. Darken and R.W. Gurry: J. Am. Chem. Soc., 1945, vol. 67, pp. 1398–1412.

    CAS  Google Scholar 

  12. Y.K. Rao: Chem. Eng. Sci., 1974, vol. 29, pp. 1435–45.

    Article  CAS  Google Scholar 

  13. R.H. Tlen and E.T. Turkdogan: Metall. Trans. B, 1977, vol. 8B, pp. 305–13.

    Google Scholar 

  14. J. Feinman and D.M. Rae: Direct Reduced Iron Technology and Economics of Production and Use, ISS, Warrendale, PA, 1999, p. 53.

    Google Scholar 

  15. H.K. Kohl and H.-J. Engell: Arch. Eisenhuttenwes., 1963, vol. 6, pp. 411–18.

    Google Scholar 

  16. E.T. Turkdogan and J.V. Vinters: Carbon, 1970, vol. 8, pp. 39–53.

    Article  CAS  Google Scholar 

  17. E.W. Thiele: Ind. Eng. Chem., 1939, vol. 31, pp. 916–20.

    Article  CAS  Google Scholar 

  18. A. Wheeler: Adv. Catalysis, 1951, vol. 3, pp. 249–327.

    Article  Google Scholar 

  19. S.R. Story and R.J. Fruehan: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 43–54.

    Article  CAS  Google Scholar 

  20. H.-J. Grabke: Z. Elektrochem., 1965, vol. 69, pp. 48–57.

    CAS  Google Scholar 

  21. F.S. Pettit and J.B. Wagner: Acta Met., 1964, vol. 12, pp. 35–40.

    Article  CAS  Google Scholar 

  22. K. Hauffe and H. Pfeiffer: Z. Metallkd., 1953, vol. 44, pp. 27–36.

    CAS  Google Scholar 

  23. R.J. Fruehan and L.J. Martonik: High Temp. Sci., 1971, vol. 3(3), pp. 244–56.

    CAS  Google Scholar 

  24. S.P. Trushenski, K. Li, and W.O. Philbrook: Metall. Trans., 1974, vol. 5, pp. 1149–58.

    CAS  Google Scholar 

  25. M. Meraikib and H.A. Friedrichs: Arch. Eisenhuttenwes., 1987, vol. 58, pp. 439–45.

    CAS  Google Scholar 

  26. A.A. El-Geassy and V. Rajakumar: Iron Steel Inst. Jpn. Int., 1985, vol. 25, pp. 1202–11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortini, O.M., Fruehan, R.J. Rate of reduction of ore-carbon composites: Part I. Determination of intrinsic rate constants. Metall Mater Trans B 36, 865–872 (2005). https://doi.org/10.1007/s11663-005-0088-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0088-y

Keywords

Navigation