Skip to main content
Log in

Structure of turbulent flow in a slab mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The structure of the turbulent flow in a slab mold is studied using a water model, various experimental techniques, and mathematical simulations. The meniscus stability depends on the turbulence structure of the flow in the mold; mathematical simulations using the k-ε model and the Reynolds-stress model (RSM) indicate that the latter is better at predicting the meniscus profile for a given casting speed. Reynolds stresses and flow vorticity measured through the particle-image velocimetry (PIV) technique are very close to those predicted by the RSM model, and maximum and minimum values across the jet diameter are reported. The backflow in the upper side of the submerged entry nozzle (SEN) port (for a fixed SEN design) depends on the casting speed and disappears, increasing this process parameter. At low casting speeds, the jet does not report enough dissipation of energy, so the upper flow roll is able to reach the SEN port. At high casting speeds, the jet energy is strongly dissipated inside the SEN port, the narrow wall, and in the mold corner, weakening the momentum transfer of the upper flow roll, which is unable to reach the SEN port. At low casting speeds, meniscus instability is observed very close to the SEN, while at high casting speeds, this instability is observed in the mold corner. An optimum casting speed is reported where complete meniscus stability was observed. The flow structure at the free surface indicates a composite structure of islands with large gradients of velocity at high casting speeds. These velocity gradients are responsible for the meniscus instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D()/Dt=()/∂t+u i·≡():

the substantial derivative of a (passive scalar), a (vector), or a (tensor) amount of the flow

G :

gravity constant

k :

kinetic energy

P ij :

production tensor

P :

pressure

u i :

fluctuating velocity vector in the direction i

U i〉:

average velocity in the direction i

U i :

instantaneous velocity in the direction i

s ij :

fluctuating deformation-rate tensor

S ij :

averaged deformation-rate tensor

V c :

casting speed

α :

volumetric phase fraction

δ :

viscous-layer scale

ε :

dissipation rate of kinetic energy

μ :

dynamic viscosity

ν :

kinematic viscosity

ϱ mix :

density of the mixture

τ :

strain-stress tensor

References

  1. M.M. Wolf: Continuous Casting Volume 9, ISS, Warrendale, PA, 1997, pp. 1–46.

    Google Scholar 

  2. L. Zhang, J. Aoki, and B.G. Thomas: Materials Science and Technology 2004 Conf. Proc. Vol. II, TMS-AIST, Warrendale, PA, 2004, pp. 161–78.

    Google Scholar 

  3. R. Sánchez-Pérez, R.D. Morales, M. Díaz-Cruz, O. Olivares Xometl, and J. Palafox-Ramos: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 637–46.

    Google Scholar 

  4. R. Sánchez-Pérez, R.D. Morales, A. Ramos-Banderas, and J. Palafox-Ramos: Steel GRIPS J. Steel Related Mater., 2004, vol. 2, pp. 57–65.

    Google Scholar 

  5. R.D. Morales and R. Sanchez-Perez: AIST 2004 Iron and Steel Conf. Proc., TMMS-AIST, Warrendale, PA, 2004, pp. 659–68.

    Google Scholar 

  6. R. Sanchez-Perez, A. Ramos-Banderas, and R.D. Morales: Materials Science and Technology 2004 Conf. Proc. Vol. II, TMS-AIST, Warrendale, PA, 2004, pp. 149–60.

    Google Scholar 

  7. B.G. Thomas, D. Lui, and H. Bo: Proc. Sensors and Modeling in Materials Processing: Techniques and Applications, TMS, Warrendale, PA, 1997, pp. 117–42.

    Google Scholar 

  8. S. Sivaramakrishnan, H. Bai, B.G. Thomas, S.P. Vanka, and P.H. Dauby: 83rd Steelmaking Conf. Proc., ISS, Warrendale PA, 2000, vol. 83, pp. 541–57.

    Google Scholar 

  9. Q. Yuan, B.G. Thomas, and S.P. Vanka: ISS Technol. 2003 Conf. Proc., AIST, Warrendale, PA, 2003, pp. 913–27.

    Google Scholar 

  10. Q. Yuan, T. Shi, S.P. Vanka, and B.G. Thomas: Proc. Computational Modeling of Materials, Minerals and Metals Processing, Cross, Bailey, and Evans, eds., Warrendale, PA, 2001, pp. 491–500.

  11. D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1993, vol. 25B, pp. 227–33.

    Google Scholar 

  12. B.G. Thomas and L. Zhang: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 1181–93.

    CAS  Google Scholar 

  13. A. Theodorakakos and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1321–27.

    Article  CAS  Google Scholar 

  14. J. Anagnostopoulos and G. Bergeles: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1095–1105.

    Article  CAS  Google Scholar 

  15. K. Takatani, Y. Tanizawa, H. Mizukami, and K. Nishimura: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 1261–62.

    Google Scholar 

  16. R. Sanchez-Perez, R.D. Morales, L. Garcia-Demedices, J. Palafox-Ramos, and M. Diaz-Cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 85–99.

    CAS  Google Scholar 

  17. C.W. Hirt and B.D. Nicholls: J. Comp. Phys., 1981, vol. 39, pp. 201–21.

    Article  Google Scholar 

  18. D.C. Wilcox: Turbulence Modeling for CFD, DCW Industries Inc., La Canada, CA, 2000, pp. 103–218.

    Google Scholar 

  19. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–14.

    Article  Google Scholar 

  20. J.C. Rotta: Z. Phys., 1951, vol. 29, pp. 547–72.

    Google Scholar 

  21. J. Boussinesq: Acad. Sci., 1877, vol. 23, pp. 46–50.

    Google Scholar 

  22. B.J. Daly and F.H. Harlow: Phys. Fluids, 1970, vol. 13, pp. 2634–49.

    Article  Google Scholar 

  23. J.L. Lumley: Adv. Appl. Mech., 1978, vol. 18, pp. 123–76.

    Article  Google Scholar 

  24. D.C. Haworth and S.B. Pope: Phys. Fluids, 1986, vol. 29, pp. 387–405.

    Article  Google Scholar 

  25. C.G. Speziali, S. Sarkar, and T.B. Gaski: J. Fluid Mech., 1991, vol. 227, pp. 245–72.

    Article  Google Scholar 

  26. B.E. Launder, G.J. Reece, and W. Rodi: J. Fluids Mech., 1975, vol. 68, pp. 537–66.

    Article  Google Scholar 

  27. B.E. Launder and D.B. Spalding: Mathematical Models of Turbulence, Academic Press, London, 1972, pp. 65–180.

    Google Scholar 

  28. F.M. Najjar, B.G. Thomas, and D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65.

    CAS  Google Scholar 

  29. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.

    CAS  Google Scholar 

  30. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84.

    CAS  Google Scholar 

  31. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 685–91.

    CAS  Google Scholar 

  32. Mikio Suzuki, Makoto Suzuki, and M. Nakada: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 670–82.

    CAS  Google Scholar 

  33. R.M. McDavid and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 672–85.

    Article  CAS  Google Scholar 

  34. S. Sivaramakrishnan, H. Bai, B.G. Thomas, S.P. Vanka, P.H. Dauby, and M. Assar: 83rd Steelmaking Proc., ISS, Warrendale, PA, 2000, vol. 83, pp. 541–47.

    Google Scholar 

  35. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 1262–71.

    CAS  Google Scholar 

  36. S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, United Kingdom, 2000, pp. 264–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez-López, P., Demedices, L.G., Dávila, O. et al. Structure of turbulent flow in a slab mold. Metall Mater Trans B 36, 787–800 (2005). https://doi.org/10.1007/s11663-005-0082-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0082-4

Keywords

Navigation