Skip to main content
Log in

Large-eddy simulation of laser-induced surface-tension-driven flow

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The turbulent flow inside a laser-generated molten pool is investigated by an adapted large-eddy simulation (LES) model that incorporates physical considerations pertaining to the solid-liquid phase change. A single-domain, fixed-grid enthalpy-porosity approach is utilized to model the phase-change phenomena in the presence of a continuously evolving solid/liquid interface. The governing transport equations are simultaneously solved by employing a control-volume formulation, in conjunction with an appropriate enthalpy-updating closure scheme. To demonstrate the performance of the present model in the context of phase-change materials processing, simulation of a typical high-power laser melting process is carried out, where effects of turbulent transport can actually be realized. It is found that the present LES-based model is more successful in capturing the experimental trends, in comparison to the k-ε-based turbulence models often employed to solve similar problems in contemporary research investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a P,a /0 P :

discretization equation coefficients

b :

small number to avoid division by zero

c :

specific heat (J/kg K)

f l :

liquid fraction

g :

acceleration due to gravity (m/s2)

G :

filter function

h :

convective heat-transfer coefficient (W/m2 K)

H :

total enthalpy (J/kg)

k m :

a large number

k SGS :

subgrid kinetic energy (m2/s2)

K :

thermal conductivity (W/m K)

L :

latent heat of fusion (J/kg)

P :

pressure (N/m2)

P SGS :

subgrid production term (m2/s3)

Q :

net power (W)

q″:

heat flux (W/m2)

Q :

actual power input (W)

r q :

radius of laser beam (m)

R:

universal gas constant (J/Kmol K)

T :

temperature (K)

t :

time (seconds)

U :

x component of velocity (m/s)

v :

y component of velocity (m/s)

w :

z component of velocity (m/s)

x, y, and z :

coordinate system

β T :

volumetric expansion coefficient of heat (K−1)

η :

laser efficiency

η k :

Kolmogorov length scale

μ :

dynamic viscosity (Pa·s)

μ t :

Eddy viscosity (Pa·s)

h L :

latent enthalpy (J/kg)

ε SGS :

subgrid kinetic-energy dissipation rate (m2/s3)

ε r :

emissivity

ε t :

total dissipation rate (m2/s3)

λ :

relaxation factor

\(\bar \theta \) :

normalized temperature

ρ :

density (kg/m3)

σ rad :

Stefan-Boltzmann constant (W/m2 K4)

σ T :

surface-tension coefficient (N/m K)

ζ :

vorticity vector (m/s2)

max:

maximum value

n :

iteration level/normal direction

old:

old iteration value

ref:

reference

∞:

ambient

SGS:

subgrid term

References

  1. C.L. Chan, J. Mazumdar, and M.M. Chen: Mater. Sci. Technol., 1987, vol. 3, pp. 306–11.

    CAS  Google Scholar 

  2. C.L. Chan, J. Mazumdar, and M.M. Chen: Metall. Trans. A, 1984, vol. 15A, pp. 2175–84.

    CAS  Google Scholar 

  3. C.L. Chan, J. Mazumdar, and M.M. Chen: J. Appl. Phys., 1988, vol. 64, pp. 6166–75.

    Article  Google Scholar 

  4. B. Basu and J. Srinivasan: Int. J. Heat Mass Transfer, 1988, vol. 11, pp. 2331–38.

    Article  Google Scholar 

  5. S. Kou and Y.H. Wang: Metall. Trans. A, 1986, vol. 17A, pp. 2265–70.

    CAS  Google Scholar 

  6. J.C. Chen and Y.C. Huang: Int. J. Heat Mass Transfer, 1990, vol. 34, pp. 663–71.

    Article  Google Scholar 

  7. M.R. Aboutalebi, M. Hassan, and R.I.L. Guthrie: Num. Heat Transfer, 1995, vol. 28, pp. 279–99.

    Google Scholar 

  8. W. Shyy, Y. Pang, G.B. Hunter, D.Y. Wei, and M.H. Chen: Int. J. Heat Mass Transfer, 1992, vol. 15, pp. 1229–45.

    Article  Google Scholar 

  9. K. Mundra, T. DebRoy, T. Zacharia, and S. David: Welding J., 1992, vol. 71, pp. 313–20.

    CAS  Google Scholar 

  10. R.T.C. Chao and J. Szekely: Welding J., 1994, vol. 73, pp. 25–31.

    Google Scholar 

  11. K. Hong, D.C. Wakeman, and A.B. Strong: Trends in Welding Research, Proc. 4th Int. Conf., Gatinberg, TN, 1995, ASM INTERNATIONAL, Metal Park, OH, 1995, pp. 399–404.

    Google Scholar 

  12. N. Chakraborty, S. Chakraborty, and P. Dutta: Int. J. Num. Methods Heat Fluid Flow, 2003, vol. 13, pp. 7–30.

    Article  Google Scholar 

  13. N. Chakraborty, D. Chatterjee, and S. Chakraborty: Num. Heat Transfer, 2004, vol. 46, pp. 1009–32.

    Article  CAS  Google Scholar 

  14. G. Erlebacher, M.Y. Hussaini, C.G. Speziale, and T.A. Zang: J. Fluid Mech., 1992, vol. 238, pp. 155–85.

    Article  CAS  Google Scholar 

  15. U. Schumann: J. Comput. Phys., 1975, vol. 18, pp. 376–404.

    Article  Google Scholar 

  16. A.D. Brent, V.R. Voller, and K.J. Reid: Num. Heat Transfer, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  17. S. Menon, P.K. Yeung, and W.W. Kim: Comput. Fluids, 1996, vol. 25, pp. 165–80.

    Article  Google Scholar 

  18. W.W. Kim, S. Menon, and H.C. Mongia: Combust. Sci. Technol., 1999, vol. 143, pp. 25–62.

    CAS  Google Scholar 

  19. R.H. Kraichnan: J. Atmos. Sci., 1976, vol. 33, pp. 1521–36.

    Article  Google Scholar 

  20. M. Lesieur and O. Metais: Ann. Rev. Fluid Mech., 1996, vol. 28, pp. 45–82.

    Article  Google Scholar 

  21. Y.H. Pao: Phys. Fluids, 1965, vol. 8, pp. 1063–70.

    Article  Google Scholar 

  22. V.K. Chakravarthy and S. Menon: Combust. Sci. Technol., 2001, vol. 162, pp. 175–222.

    CAS  Google Scholar 

  23. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.

    Google Scholar 

  24. S. Chakraborty and P. Dutta: Metall. Trans. B, 2001, vol. 32B, pp. 562–64.

    CAS  Google Scholar 

  25. A. Bejan: Convection Heat Transfer, 2nd ed., John Wiley & Sons, New York, NY, 1995.

    Google Scholar 

  26. N. Chakraborty, D. Chatterjee, and S. Chakraborty: J. Appl. Phys., 2004, vol. 96, pp. 4569–77.

    Article  CAS  Google Scholar 

  27. D.R. Atthey: J. Fluid Mech., 1980, vol. 98, pp. 787–801.

    Article  CAS  Google Scholar 

  28. J.A. Sekhar: Ph.D. Thesis, University of Illinois, Urbana-Champaign, Urbana, IL, 1982.

    Google Scholar 

  29. D. Chatterjee and S. Chakraborty: Phys. Lett. A, 2005, vol. 341, pp. 320–30.

    Article  CAS  Google Scholar 

  30. B.A. Galperin and S.A. Orszag: Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, Cambridge, United Kingdom, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, D., Chakraborty, S. Large-eddy simulation of laser-induced surface-tension-driven flow. Metall Mater Trans B 36, 743–754 (2005). https://doi.org/10.1007/s11663-005-0078-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0078-0

Keywords

Navigation