Skip to main content
Log in

Kinetics of scrap melting in liquid steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The melting rate of steel bars with various sizes, shapes, and initial temperatures in a 70 kg liquid steel bath (1650 °C) was measured to investigate the kinetics involved in steel scrap melting. Our measurements revealed that a solidified shell was formed around the original bar immediately after it was immersed into the liquid steel. This shell and an associated interfacial gap generated between it and the original bar were found to be critical to the melting kinetics. We also found that the total melting time decreased linearly with increasing initial bar temperature. The melting process was simulated using a two-dimensional phase-field model that considered heat convection with a constant heat-transfer coefficient. Our simulations were in good agreement with our experiments and showed that the heat conduction associated with the interfacial gap was one of the most important physical aspects controlling the melting of steel scrap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Making, Shaping, and Treating of Steel: Steelmaking and Refining Volume, 11th ed., R.J. Fruehan, ed., AISE Steel Foundation, Pittsburgh, PA, 1998, pp. 525–48.

    Google Scholar 

  2. R.I.L. Guthrie and L. Gourtsoyannis: Can. Met. Q., 1971, vol. 10, pp. 37–46.

    CAS  Google Scholar 

  3. J. Szekely, Y.K. Chuang, and J.W. Hlinka: Metall. Trans., 1972, vol. 3, pp. 2825–33.

    CAS  Google Scholar 

  4. D.D. Burdakov and A.P. Varshavskii: Stal, 1968, No. 8, pp. 647–53 (in English).

  5. Eckehard Specht and Rudolf Jeschar: Steel Res., 1993, vol. 64, pp. 28–34.

    CAS  Google Scholar 

  6. J.K. Wright: Metall. Trans. B, 1989, vol. 20B, pp. 363–74.

    CAS  Google Scholar 

  7. H. Gaye, P. Destannes, J.L. Roth, and M. Guyon: Proc. 6th Int. Iron and Steel Congr., ISIJ, Nagoya, Japan, 1990, pp. 11–17.

    Google Scholar 

  8. Q. Jiao and N.J. Themelis: Can. Met. Q., 1993, vol. 32, pp. 75–83.

    CAS  Google Scholar 

  9. Metals Handbook, vol. 1, Properties and Selections: Iron and Steel, 10th ed., S.R. Lampman et al., eds., ASM, Materials Park, OH, 1990, pp. 140–95.

    Google Scholar 

  10. B. Collins and H. Levine: Phys. Rev. B, 1985, vol. 31, pp. 6119–22.

    Article  CAS  Google Scholar 

  11. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–29.

    Article  CAS  Google Scholar 

  12. N. Provatas, J. Dantzig, and N. Goldenfeld: Phys. Rev. Lett., 1998, vol. 8, pp. 3308–11.

    Article  Google Scholar 

  13. N. Provatas and J. Dantzig: The Encyclopedia of Material Science and Technology, World Scientific, Oxford, United Kingdom, 2001, pp. 2052–59.

    Google Scholar 

  14. B. Grossmann, K. Elder, M. Grant, and J.M. Kosterlitz: Phys. Rev. Lett., 1993, vol. 20, pp. 3323–26.

    Article  Google Scholar 

  15. K.R. Elder, M. Grant, N. Provatas, and J.M. Kosterlitz: Phys. Rev. E, 2001, vol. 64, pp. 1604–21.

    Article  Google Scholar 

  16. M. Chaikin and T.C. Lubensky: Principles of Condensed matter Physics, Cambridge University Press, Cambridge, United Kingdom, 1995, p. 467.

    Google Scholar 

  17. Jun-Ho Jeong, N. Goldenfield, and J. Dantzig: Phys. Rev. E, 2001, vol. 64, pp. 041602(1–14).

  18. H. Landau and M.J. Paez: Computational Physics: Problem Solving with Computers, Wiley, New York, NY, 1997, pp. 343–62.

    Google Scholar 

  19. Guowei Li and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 509–25.

    CAS  Google Scholar 

  20. J. Ni and C. Beckermann: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  21. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  22. W.D. Bennon and F.P. Incropera: Num. Heat Transfer, 1988, vol. 13, pp. 277–96.

    Google Scholar 

  23. R.I.L. Guthrie: Engineering in Process Metallurg, Oxford Science Publications, Oxford, United Kingdom, 1993, p. 483.

    Google Scholar 

  24. Handbook of Physico-Chemical Properties at High Temperatures, Yasuji Kawai and Yutake Shiraishi, eds., ISIJ, Tokyo, 1988, pp. 2–257.

    Google Scholar 

  25. Introduction to Heat Transfer, Junqin Zhou, ed., Metallurgical Industry Press, Beijing, 1999, p. 163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Provatas, N. & Brooks, G. Kinetics of scrap melting in liquid steel. Metall Mater Trans B 36, 293–302 (2005). https://doi.org/10.1007/s11663-005-0031-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0031-2

Keywords

Navigation