Skip to main content
Log in

Surface tension of liquid Fe-Cr-O alloys at 1823 K

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The surface tension of liquid Fe-Cr-O alloys has been determined by using the sessile drop method at 1823 K. It was found that the surface tension of liquid Fe-Cr-O alloy markedly decreases with oxygen content at constant chromium content, and the surface tension at a given oxygen content remains almost constant, regardless of the chromium content. When the surface tension of liquid Fe-Cr-O alloys is plotted as a function of oxygen activity, with an increase in the chromium content, the surface tension shows a much steeper decrease with respect to oxygen activity. The surface tension of liquid Fe-Cr-O alloys at 1823 K is given as follows: σ=1842-279 ln (1+K O a O). Here, assuming a Langmuir-type adsorption isotherm, the adsorption coefficient of oxygen, K O(Fe-Cr), as a function of chromium content, was shown to be K O=140+4.2 × [wt pct Cr]+1.14 × [wt pct Cr]2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Fruehan and L.J. Martonik: Metall. Trans. B, 1980, vol. 11B, pp. 615–21.

    CAS  Google Scholar 

  2. S. Ban-ya, F. Ishii, Y. Iguchi, and T. Nagasaka: Metall. Trans. B, 1988, vol. 19B, pp. 233–42.

    CAS  Google Scholar 

  3. M. Byrne and G.R. Belton: Metall. Trans. B, 1983, vol. 14B, pp. 441–49.

    CAS  Google Scholar 

  4. P.C. Glaws and R.J. Fruehan: Metall. Trans. B, 1985, vol. 16B, pp. 551–59.

    CAS  Google Scholar 

  5. P.C. Glaws and R.J. Fruehan: Metall. Trans. B, 1986, vol. 17B, pp. 317–22.

    CAS  Google Scholar 

  6. K. Harashima, S. Mizoguchi, M. Matsuo, and A. Kiyose: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 111–19.

    CAS  Google Scholar 

  7. H. Ono, H. Fukagawa, K. Morita, and N. Sano: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 848–53.

    CAS  Google Scholar 

  8. H. Ono, K. Iuchi, K. Morita, and N. Sano: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1245–49.

    CAS  Google Scholar 

  9. J. Zhu and K. Mukai: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 220–28.

    CAS  Google Scholar 

  10. K. Morita, T. Hirosumi, and N. Sano: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 899–904.

    Article  CAS  Google Scholar 

  11. J. Lee and K. Morita: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 14–19.

    CAS  Google Scholar 

  12. T. Nagasaka, R.J. Fruehan, and A.W. Cramb: ISSTech 2003 Conf. Proc., “Ironmaking Process Technology/Wolf Symposium,” Iron and Steel Society, Warrendale, PA, 2003, pp. 979–92.

    Google Scholar 

  13. G.R. Belton: Metall. Trans. B, 1976, vol. 7B, pp. 35–42.

    CAS  Google Scholar 

  14. K. Mukai and W. Lin: Tetsu-to-Hagané, 1994, vol. 80, pp. 527–32.

    CAS  Google Scholar 

  15. K. Mukai and W. Lin: Tetsu-to-Hagané, 1994, vol. 80, pp. 533–38.

    CAS  Google Scholar 

  16. K. Mukai, Z. Li, and M. Zeze: Mater. Trans. JIM, 2002, vol. 43 (7), pp. 1724–31.

    Article  CAS  Google Scholar 

  17. A. Sharan, T. Nagasaka, and A.W. Cramb: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 626–28.

    CAS  Google Scholar 

  18. Y. Chung and A.W. Cramb: Steel Res., 1999, vol. 70 (8–9), pp. 325–29.

    CAS  Google Scholar 

  19. U. Mittag and K. Lange: Arch. Eisenhuttenwes. 1976, vol. 47, pp. 65–69.

    CAS  Google Scholar 

  20. K. Mori, M. Kishimoto, T. Shimose, and Y. Kawai: J. Jpn. Inst. Met., 1975, vol. 39, pp. 1301–07.

    CAS  Google Scholar 

  21. E.S. Levin and G.D. Ayushina: Russ. J. Phys. Chem., 1971, vol. 45, p. 792.

    Google Scholar 

  22. J. Lee, A. Kiyose, S. Nakatsuka, M. Nakamoto, and T. Tanaka: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp. 1793–99.

    CAS  Google Scholar 

  23. K. Nogi, W.B. Chung, A. McLean, and W.A. Miller: Mater. Trans. JIM, 1991, vol. 32 (2), pp. 164–68.

    CAS  Google Scholar 

  24. F.A. Halden and W.D. Kingery: J. Phys. Chem., 1955, vol. 59, pp. 557–59.

    Article  CAS  Google Scholar 

  25. P. Kozakevitch and G. Urbain: Mem. Sci. Rev. Metall., 1961, vol. 58 (7), pp. 517–34.

    CAS  Google Scholar 

  26. K. Ogino, S. Hara, T. Miwa, and S. Kimoto: Tetsu-to-Hagané, 1979, vol. 65, (14), pp. 2012–21.

    CAS  Google Scholar 

  27. B.J. Keene, K.C. Mills, J.W. Bryant, and E.D. Hondros: Can. Metall. Q., 1982, vol. 21 (4), pp. 393–403.

    CAS  Google Scholar 

  28. A. Kasama, A. McLean, W.A. Miller, Z. Morita, and M.J. Ward: Can. Metall. Q., 1982, vol. 22 (1), pp. 9–17.

    Google Scholar 

  29. K. Ogino, K. Nogi, and C. Hosoi: Tetsu-to-Hagané, 1983, vol. 69 (16), pp. 1989–94.

    CAS  Google Scholar 

  30. I. Jimbo and A.W. Cramb: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (1), pp. 26–35.

    CAS  Google Scholar 

  31. J. Zhu and K. Mukai: Iron Steel Inst. Jpn. Int., 1998, vol. 38 (10), pp. 1039–44.

    CAS  Google Scholar 

  32. J. Lee and K. Morita: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 588–94.

    CAS  Google Scholar 

  33. J. Lee and K. Morita: Steel Res., 2002, vol. 73, pp. 367–72.

    CAS  Google Scholar 

  34. I. Jimbo and A.W. Cramb: Metall. Trans. B, 1993, vol. 24B, pp. 5–10.

    CAS  Google Scholar 

  35. Steelmaking Data Sourcebook, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking, Gordon and Breach Science Publishers, New York, NY, 1988, pp. 255–62.

  36. T. Itoh, T. Nagasaka, and M. Hino: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 1051–58.

    CAS  Google Scholar 

  37. S. Dimitrov, H. Wenz, K. Koch, and D. Janke: Steel Res., 1995, vol. 66, pp. 39–44.

    CAS  Google Scholar 

  38. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, Inc., New York, NY, 1980.

    Google Scholar 

  39. F.C. Tompkins: Chemisorption of Gases on Metals, Academic Press, London, 1978, p. 11.

    Google Scholar 

  40. J. Lee, T. Tanaka, M. Yamamoto, and S. Hara: Mater. Trans., 2004, vol. 45, pp. 625–29.

    Article  CAS  Google Scholar 

  41. G. Bernard and C.H.P. Lupis: Metall. Trans., 1971, vol. 2, pp. 2991–98.

    CAS  Google Scholar 

  42. L.H. Van Vlack: Elements of Materials Science and Engineering, 6th ed., Addison-Wesley Publishing Company, Reading, MA, 1989, pp. 554–55.

    Google Scholar 

  43. I. Jimbo, A. Sharan, and A.W. Cramb: Trans. ISS, 1994, vol. 21, pp. 48–55.

    Google Scholar 

  44. A. Obeahs, F. Tsukihashi, and N. Sano: Trans. Iron Steel Inst. Jpn., 1987, vol. 33 (11), pp. 1131–35.

    Google Scholar 

  45. T. Choh, T. Takebe, and M. Inouye: Tetsu-to-Hagané, 1981, vol. 67, p. 2665.

    CAS  Google Scholar 

  46. K. Yamamoto: Master’s Thesis, The University of Tokyo, Tokyo, 1993.

    Google Scholar 

  47. F. Ishii, Y. Iguchi, and S. Ban-ya: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 128–32.

    Google Scholar 

  48. H. Ono, K. Iuchi, K. Morita, and N. Sano: Iron Steel Inst. Int., 1996, vol. 36, pp. 1245–49.

    CAS  Google Scholar 

  49. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, New York, NY, 1960, pp. 511, 647, and 746.

    Google Scholar 

  50. T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1993, p. 221.

    Google Scholar 

  51. H. Tang, T. Tsai, and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1412–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Yamamoto, K. & Morita, K. Surface tension of liquid Fe-Cr-O alloys at 1823 K. Metall Mater Trans B 36, 241–246 (2005). https://doi.org/10.1007/s11663-005-0025-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0025-0

Keywords

Navigation