Skip to main content
Log in

Results demonstrating techniques for enhancing electrochemical reactions involving iron oxide in slags and C in liquid iron

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 02 December 2009

Abstract

Two techniques are described for the enhancement of the kinetics of reduction of iron oxide from slags by carbon in molten iron. Laboratory experiments have shown that the rate of iron oxide reduction by carbon-saturated iron can be increased by 5 to 10 times when the reaction is carried out under a reduced-pressure atmosphere. This effect is thought to be the result of the increased volumetric gas evolution through the slag layer and the associated increase in slag stirring. A model is presented, which relates the mass-transfer coefficient for ferrous ions in the slag to its stirring that is controlled by varying the ambient pressure. Additional laboratory experiments examined the electrochemical nature of iron oxide reduction from slag by carbon in liquid iron. Results indicate that the reduction of iron oxide from slag is increased in the presence of an applied electric field. The external circuit allows for the separation of the half-cell reactions associated with iron oxide reduction and decarburization and increases the reaction area available for the individual reactions. These results have significant implications for several important slag metal reactions, which occur during ironmaking and steelmaking operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Geiger: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 561–75.

    Article  Google Scholar 

  2. N. Margolis and L. Sousa: 1997 ACEEE Summer Study on Energy Efficiency in Industry Proc., M. Olszewski, ed., American Council for an Energy-Efficient Economy, Washington, DC, 1997, pp. 103–13.

    Google Scholar 

  3. E.T. Turkdogan: Fundamentals of Steelmaking, Institute of Materials, London, 1996.

    Google Scholar 

  4. Z. Morita: An Introduction to Iron and Steel Processing, Z. Morita, T. Emi, T. Enami, and O. Hashimoto, eds., Kawasaki Steel 21st Century Foundation, Japan, 1997.

    Google Scholar 

  5. The Making, Shaping and Treating of Steel, 10th ed., W.T. Lankford, Jr., N.L. Samways, R.F. Craven, and H.E. McGannon, eds., United States Steel, 1985.

  6. D.J. Min and R.J. Fruehan: Metall. Mater. Trans. B, 1992, vol. 23B, pp. 29–37.

    CAS  Google Scholar 

  7. A. McLean, I.D. Sommerville, and F.L. Kemeny: 4th Int. Conf. on Molten Slags and Fluxes, Iron and Steel Institute of Japan, Sendai, 1992, pp. 268–73.

    Google Scholar 

  8. I.D. Sommerville and F.L. Kimeny: Electric Furnace Conf. Proc., ISS-AIME, Warrendale, PA, 1985, pp. 31–36.

    Google Scholar 

  9. I.D. Sommerville and F.L. Kimeny: U.S. Patent 4,940,486, July 10, 1990.

  10. M. Grimble, R.G. Ward, and D.J. Williams: J. Iron Steel Inst., 1965, vol. 203 (3), pp. 264–67.

    CAS  Google Scholar 

  11. P.R. Talor and W. Wang: J. Met., 2001, vol. 53 (1), pp. 25–26.

    Google Scholar 

  12. P.R. Talor and W. Wang: Plasma Chem. Processing, 2002, vol. 22 (3), pp. 387–400.

    Article  Google Scholar 

  13. W. Wang: Ph.D. Thesis, University of Idaho, Moscow, ID, 2000.

    Google Scholar 

  14. P.R. Talor and W. Wang: Minerals Metall. Processing, 2004, vol. 21 (2), pp. 103–09.

    Google Scholar 

  15. R.J. Donahue: U.S. Patent No. 4,964,973, Oct. 23, 1990.

  16. H.R. Larson and T.W. Eagar: J. Met., 1998, vol. 50 (9), pp. 56–57.

    CAS  Google Scholar 

  17. U.B. Pal and J. Szekely: U.S. Patent No. 5,700,308, Dec. 1997.

  18. D.E. Woolley and U.B. Pal: Iron Steel Inst. Jpn. Int., 1999, vol. 39, pp. 103–12.

    CAS  Google Scholar 

  19. D.E. Wooley: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

    Google Scholar 

  20. S.K. Tarby: Ph.D. Thesis, Carnegie Institute of Technology, Pittsburgh, PA, 1962.

    Google Scholar 

  21. B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Trans. B, 1996, vol. 27B, pp. 717–30.

    CAS  Google Scholar 

  22. W.H. Linton and T.K. Sherwood: Chem. Eng. Progr., 1950, vol. 46, pp. 258–64.

    CAS  Google Scholar 

  23. F.D. Richardson, D.G.C. Robertson, and B.B. Staples: in Physical Chemistry in Metallurgy, R.M. Fischer, R.A. Oriani, and E.T. Turkdogan, USS, Monroeville, PA, 1976, pp. 25–48.

    Google Scholar 

  24. G.G. Krishnamurthy, A. Hasham, and U.B. Pal: Ironmaking and Steelmaking, 1993, vol. 20 (3), pp. 191–200.

    Google Scholar 

  25. A. Powell and D. Dussault: Scand. J. Metall., 2003, vol. 32, pp. 33–36.

    Article  CAS  Google Scholar 

  26. D.P. Barkey, R.H. Muller, and C.W. Tobias: J. Electrochem. Soc., 1989, vol. 136, pp. 2199–207.

    Article  CAS  Google Scholar 

  27. D.P. Barkey, R.H. Muller, and C.W. Tobias: J. Electrochem. Soc., 1989, vol. 136, pp. 2207–14.

    Article  CAS  Google Scholar 

  28. M. Haataja, D.J. Srolovitz, and A.B. Bocarsly: J. Electrochem. Soc., 2003, vol. 150 (10), pp. C699-C707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11663-009-9326-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, U.B., MacDonald, S.A., Woolley, D.W. et al. Results demonstrating techniques for enhancing electrochemical reactions involving iron oxide in slags and C in liquid iron. Metall Mater Trans B 36, 209–218 (2005). https://doi.org/10.1007/s11663-005-0022-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0022-3

Keywords

Navigation