Skip to main content
Log in

MgOHCl thermal decomposition kinetics

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Experiments to determine the kinetics of the thermal decomposition of MgOHCl were performed. It was found that the decomposition of MgOHCl commenced at 649 K, and it directly converted into MgO and HCl without undergoing any intermediate step. Decomposition vs time data showed that the thermal decomposition of MgOHCl was a first-order process with respect to the amount of MgOHCl remaining, and the mass transfer of the product HCl gas away from the interface was likely the rate-limiting step. It was also found that the time required to completely decompose MgOHCl into MgO, more than 20 minutes, at the operating temperatures of electrolytic magnesium production processes, 600 °C±50 °C, was significantly longer than the time required, less than 1 minute, to digest the solid magnesium chloride containing feed material into the molten salt electrolyte in these processes. Such delay in the decomposition would mean that any MgOHCl produced during heating and digestion of the feed would not be decomposed by the heat of the electrolyte and thus the persistent MgOHCl would dissolve into the molten salt electrolyte with potentially severe negative consequences on electrolysis cell operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dead Sea Magnesium Ltd., P.O. Box 1195, Beer Sheva 84111, Israel. http://www.dsmag.co.il/about_new.htm, July 2004.

  2. Norsk Magnesium, 7000 Raoul-Duchesne Blvd., Bécancour, Québec, Canada G9H 2V3, http://www.hydromagnesium.com/, July 2004.

  3. Noranda Magnesium Inc., 801 Crescent Centre Drive. Suite 600, Franklin, TN 37067, http://www.norandamagnesium.com/, July 2004.

  4. Australan Magnesium Corporation, Level 5, 30 Little Cribb St., P.O. Box 1364BC, Milton, Queensland, Australia, 4064, http://www.austmg.com/, July 2004.

  5. E.I. Savinkova: Z. Prikl. Khim., 1977, vol. 50 (100), pp. 2155–57.

    CAS  Google Scholar 

  6. E.I. Savinkova, Y.E. Vil’nyanskii, and L.S. Bichikhina: J. Appl. Chem., 1970, vol. 43, pp. 521–25.

    Google Scholar 

  7. E.I. Savinkova, Y.E. Vil’nyanskii, and T.F. Svit: Z. Prikl. Khim., 1970, vol. 43 (4), pp. 754–58.

    CAS  Google Scholar 

  8. E.I. Savinkova and R.P. Lelekova: Z. Prikl. Khim., 1978, vol. 51 (7), pp. 1453–56.

    CAS  Google Scholar 

  9. E.I. Savinkova and L.S. Bichikhina: Tsv. Metall., 1967, vol. 10 (2), pp. 62–67.

    CAS  Google Scholar 

  10. G.J. Kipouros and D.R. Sadoway: Advances in Molten Salt Chemistry, 6th ed., Elsevier, New York, NY, 1987, pp. 127–209.

    Google Scholar 

  11. W. Moldenhauer: Z. Anorg. Chem., 1906, vol. 51, pp. 369–90.

    Article  CAS  Google Scholar 

  12. K.K. Kelley: United States Bureau of Mines Technical Paper 676, Government Printing Office, Washington, DC, 1945.

    Google Scholar 

  13. V.B. Kasner: Tonid. Zt. U. Kerm. Rundschau, 1958, vol. 82, pp. 290–91.

    Google Scholar 

  14. B.N. Chaudhuri, P. Ray, and P.K. Das-Poddar: Trans. Indian Ceram. Soc., 1987, vol. 46, pp. 15–19.

    CAS  Google Scholar 

  15. M.W. Bodine: Geology, 1976, vol. 4 (2), pp. 76–80.

    Article  CAS  Google Scholar 

  16. D.A. Chauhan: Indian Chem. J., 1975, vol. 9 (12), pp. 13–16.

    CAS  Google Scholar 

  17. F.H. Herbstein, M. Kapon, and A. Weissman: Isr. J. Chem., 1982, vol. 22, pp. 207–13.

    CAS  Google Scholar 

  18. E.I. Savinkova: Z. Prikl. Khim., 1980, vol. 53 (1), pp. 212–14.

    Google Scholar 

  19. E.I. Savinkova: Tsv. Metall., 1975, vol. 3, pp. 57–59.

    Google Scholar 

  20. K.L. Strelets: Electrolytic Production of Magnesium, translated by J. Schmorak, Israel Program for Scientific Translation, Keter Press Enterprises, Jerusalem, 1977.

    Google Scholar 

  21. M. Kreuh: Master’s Thesis, McGill University, Montreal, 2003.

    Google Scholar 

  22. M. Lamy, K.-W. Ng, and R. Harris: Can. Metall. Q., 2004, vol. 43 (4), in press.

  23. A.K. Galwey and G.M. Laverty: Thermochimica Acta, 1989, vol. 138, pp. 115–27.

    Article  CAS  Google Scholar 

  24. S. Kashani-Nejad, K.-W. Ng, and R. Harris: in Light Metals 2003, J. Masounnave and G. Dufour, eds., METSOC-CIM, Montreal, PQ, 2003, pp. 515–26.

    Google Scholar 

  25. S. Kashani-Nejad: Ph.D. Thesis (in preparation), McGill University, Montreal, PQ, 2004.

    Google Scholar 

  26. S. Kashani-Nejad, K.-W. Ng, and R. Harris: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 405–06.

    CAS  Google Scholar 

  27. S. Kashani-Nejad, K.-W. Ng, and R. Harris: “Novel Method for Magnesium Oxides Speciation,” Report of Invention, McGill University, Montreal, PQ, October 12, 2003.

    Google Scholar 

  28. Cahn Thermax 700 thermogravimetric analyzer, http://www.thermo.com/, July 2004.

  29. Air Products model OMI-2 gas purifier, http://www.airproducts.com/, July 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashani-Nejad, S., Ng, K.W. & Harris, R. MgOHCl thermal decomposition kinetics. Metall Mater Trans B 36, 153–157 (2005). https://doi.org/10.1007/s11663-005-0015-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0015-2

Keywords

Navigation