Skip to main content
Log in

A comparative study on the surface integrity of plastic mold steel due to electric discharge machining

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The violent nature of the electric discharge machining (EDM) process leads to a unique structure on the surface of a machined part. In this study, the influence of electrode material and type of dielectric liquid on the surface integrity of plastic mold steel samples is investigated. The results have shown that regardless of the tool electrode and the dielectric liquid, the white layer is formed on machined surfaces. This layer is composed of cementite (Fe3C) and martensite distributed in retained austenite matrix forming dendritic structures, due to rapid solidification of the molten metal, if carbon-based dielectric liquid is used. The intensity of cracking increases at high pulse durations and low pulse currents. Cracks on the EDM surfaces have been found to follow the pitting arrangements with closed loops and to cross perpendicularly with radial cracks and continue to propagate when another discharge takes place in the neighborhood. The amount of retained austenite phase and the intensity of microcracks have found to be much less in the white layer of the samples machined in de-ionized water dielectric liquid. The number of globule appendages attached to the surface increased when a carbon-based tool electrode material or a dielectric liquid was used during machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. McGeough and H. Rasmussen: Int. J. Mach. Tool Design Res., 1982, vol. 22 (4), pp. 333–39.

    Article  Google Scholar 

  2. J.R. Crookall and B.C. Khan: Proc. 15th Int. MTDR Conf., Birmingham, England, 1974, pp. 373–84.

    Google Scholar 

  3. N. Saito: Mitsubishi Denki Lab. Rep., 1962, pp. 375–90.

  4. H.K. Lloyd and R.H. Warren: J. Iron Steel Inst., 1965, vol. 203, pp. 238–47.

    CAS  Google Scholar 

  5. J.E. Greene and J.L. Guerrero-Alvarez: Metall. Trans., 1974, vol. 5, pp. 695–706.

    CAS  Google Scholar 

  6. V. Radhakrishnan and B.T. Achyutha: IE(I) J.-ME, 1980, vol. 60, pp. 217–22.

    Google Scholar 

  7. Y.S. Wong, M. Rahman, H.S. Lim, H. Han, and N. Ravi: J. Mater. Process. Technol., 2003, vol. 140, pp. 303–07.

    Article  Google Scholar 

  8. R. Ramaswami and R.S. Louis: Wear, 1973, vol. 24, pp. 153–60.

    Article  CAS  Google Scholar 

  9. M.L. Jeswani: Wear, 1978, vol. 51, pp. 227–36.

    Article  CAS  Google Scholar 

  10. P.V. Rama Rao and M.A. Faruqi: Precision Eng., 1982, vol. 4, pp. 111–13.

    Article  Google Scholar 

  11. L.C. Lee, L.C. Lim, V. Narayanan, and V.C. Venkatesh: Int. J. Mach. Tools Manuf., 1988, vol. 28, pp. 359–72.

    Article  Google Scholar 

  12. C. Cogun and M. Savsar: Int. J. Mach. Tools Manuf., 1990, vol. 30, pp. 467–74.

    Article  Google Scholar 

  13. D.K. Aspinwall, M.L.H. Wise, K.J. Stout, T.H.A. Goh, F.L. Zhao, and M.F. Menshawy: Int. J. Mach. Tools Manuf., 1992, vol. 32, pp. 183–93.

    Article  Google Scholar 

  14. J.C. Rebelo, A.M. Diaz, D. Kremer, and J.L. Lebrun: J. Mater. Process. Technol., 1998, vol. 84, pp. 90–96.

    Article  Google Scholar 

  15. Y. Chen and S.M. Mahdivan: Wear, 1999, vol. 236, pp. 350–54.

    Article  CAS  Google Scholar 

  16. Y. Chen and S.M. Mahdivan: J. Mater. Process. Technol., 2000, vol. 104, pp. 150–57.

    Article  Google Scholar 

  17. K.M. Tsai and P.J. Wang: Int. J. Mach. Tools Manuf., 2001, vol. 41, pp. 1455–77.

    Article  Google Scholar 

  18. M. Rozenek, J. Kozak, L. Dabrowski, and K. Lubkowski: J. Mater. Process. Technol., 2001, vol. 109, pp. 367–70.

    Article  CAS  Google Scholar 

  19. S.H. Lee and X.P. Li: J. Mater. Process. Technol., 2001, vol. 115, pp. 344–58.

    Article  CAS  Google Scholar 

  20. S.H. Halkaci and A. Erden: Proc. Engineering Systems Design and Analysis (ESDA), Istanbul, Turkey, 2002.

    Google Scholar 

  21. C.C. Liu and J.L. Huang: Ceram. Int., 2003, vol. 29, pp. 679–87.

    Article  CAS  Google Scholar 

  22. H.T. Lee and T.Y. Tai: J. Mater. Process. Technol., 2003, vol. 142, pp. 676–83.

    Article  CAS  Google Scholar 

  23. F. Ghanem, C. Braham, and H. Sidhom: J. Mater. Process. Technol., 2003, vol. 142, pp. 163–73.

    Article  CAS  Google Scholar 

  24. J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, and E.M. Aspinwall: Int. J. Machine Tools Manuf., 2003, vol. 43, pp. 121–28.

    Article  Google Scholar 

  25. Y.H. Guu, H. Hocheng, C.Y. Chou, and C.S. Deng: Mater. Sci. Technol., 2003, vol. 358, pp. 37–43.

    Google Scholar 

  26. Y.F. Luo and C.G. Chen: Precision Eng., 1990, vol. 12, pp. 97–100.

    Article  Google Scholar 

  27. N. Mohri, N. Saito, T. Takawashi, and K. Kobayashi: Proc. 26th Int. MTDR Conf., Manchester, England, 1985, pp. 329–36.

    Google Scholar 

  28. Y.F. Luo, Z.Y. Zhang, and C.Y. Yu: Ann. CIRP, 1988, vol. 37, pp. 179–81.

    Google Scholar 

  29. P.H. Thomson: Mater. Sci. Technol., 1989, vol. 5, pp. 1153–57.

    CAS  Google Scholar 

  30. S.H. Lee and X. Li: J. Mater. Process. Technol., 2003, vol. 139, pp. 315–21.

    Article  CAS  Google Scholar 

  31. Report of AGIE: Am. Machinist Automated Manufacturing, 1987, vol. 9, pp. 80–83.

  32. A.G. Mamalis, N.M. Vosniakos, N.M. Vacevanidis, and X. Junzhe: Ann. CIRP, 1988, vol. 37 (1), pp. 531–35.

    CAS  Google Scholar 

  33. H. Opitz: Met. Treat. Drop Forging, 1960, vol. 27, pp. 237–51.

    Google Scholar 

  34. M.M. Barash and M.G. Sri-Ram: Proc. 3rd Int. MTDR Conf., Birmingham, England, 1962, pp. 85–91.

    Google Scholar 

  35. M. Ramulu and J.L. Garbini: J. Eng. Mater. Technol., 1991, vol. 113, pp. 437–42.

    CAS  Google Scholar 

  36. L. Massarelli and M. Marchionni: Mater. Technol., 1977, vol. 4, pp. 100–05.

    CAS  Google Scholar 

  37. H.C. Tsai, B.H. Yan, and F.Y. Huang: Int. J. Mach. Tools Manuf., 2002, vol. 43, pp. 245–52.

    Article  Google Scholar 

  38. J.P. Kruth, L. Stevens, L. Froyen, and B. Lauwers: Ann. CIRP, 1995, vol. 44, pp. 169–72.

    Google Scholar 

  39. E.D. Cabanillas, J. Desimoni, G. Punte, and R.C. Mercader: Mater. Sci. Eng., 2000, vol. A276, pp. 133–40.

    CAS  Google Scholar 

  40. L.C. Lim, L.C. Lee, Y.S. Wong, and H.H. Lu: Mater. Sci. Technol., 1991, vol. 7, pp. 239–48.

    CAS  Google Scholar 

  41. I.A. Bucklow and M. Cole: Metall. Rev., 1969, vol. 3, pp. 103–18.

    Google Scholar 

  42. J. Wallbank: Metallurgia, 1980, vol. 47, pp. 356–62.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekmekci, B., Elkoca, O. & Erden, A. A comparative study on the surface integrity of plastic mold steel due to electric discharge machining. Metall Mater Trans B 36, 117–124 (2005). https://doi.org/10.1007/s11663-005-0011-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-005-0011-6

Keywords

Navigation