Skip to main content
Log in

On the development of a three-dimensional transient thermal model to predict ingot cooling behavior during the start-up phase of the direct chill-casting process for an AA5182 aluminum alloy ingot

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The control of the heat transfer during the start-up phase of the direct-chill (DC) casting process for aluminum sheet ingots is critical from the standpoint of defect formation. Process control is difficult because of the various inter-related phenomena occurring during the cast start-up. First, the transport of heat to the mold is altered as the ingot base deforms and the sides are pulled inward during the start-up phase. Second, the range of temperatures and water flow conditions occurring on the ingot surface as it emerges from the mold results in the full range of boiling-water heat-transfer conditions—e.g., film boiling, transition boiling, nucleate boiling, and convection—making the rate of transport highly variable. For example, points on the ingot surface below the point of water impingement can experience film boiling, resulting in the water being ejected from the surface, causing a dramatic decrease in heat transfer below the point of ejection. Finally, the water flowing down the ingot sides may enter the gap formed between the ingot base and the bottom block due to butt curl. This process alters the heat transfer from the base of the ingot and, in turn, affects the surface temperature on the ingot faces, due to the transport of heat within the ingot in the vertical direction. A comprehensive mathematical model has been developed to describe heat transfer during the start-up phase of the DC casting process. The model, based on the commercial finite-element package ABAQUS, includes primary cooling via the mold, secondary cooling via the chill water, and ingot-base cooling. The algorithm used to account for secondary cooling to the water includes boiling curves that are a function of ingot-surface temperature, water flow rate, impingement-point temperature, and position relative to the point of water impingement. In addition, a secondary cooling algorithm accounts for water ejection, which can occur at low water flow rates (low heat-extraction rates). The algorithm used to describe ingot-base cooling includes both the drop in contact heat transfer due to gap formation between the ingot base and bottom block (arising from butt curl) as well as the increase in heat transfer due to water incursion within the gap. The model has been validated against temperature measurements obtained from two 711×1680 mm AA5182 ingots, cast under different start-up conditions (nontypical “cold” practice and nontypical “hot” practice). Temperature measurements were taken at various locations on the ingot rolling and narrow faces, ingot base, and top surface of the bottom block. Ingot-based deflection data were also obtained for the two test conditions. Comparison of the model predictions with the data collected from the cast/embedded thermocouples indicates that the model accounts for the processes of water ejection and water incursion and is capable of describing the flow of heat in the early stages of the casting process satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Drezet: Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 1996.

    Google Scholar 

  2. J.B. Wiskel: Ph.D. Thesis, University of British Columbia, Vancouver, 1996.

    Google Scholar 

  3. J.F. Grandfield and P.T. McGlade: Mater. Forum, 1996, vol. 20, pp. 29–51.

    CAS  Google Scholar 

  4. J.E. Jacoby: Proc. 5th Australasian Asian Pacific Conf. on Aluminum Cast House Technology, M. Nilmani, P. Whiteley, and J. Grandfield, eds., TMS, Warrendale, PA, 1997, pp. 245–51.

    Google Scholar 

  5. W. Droste and W. Schneider: in Light Metals 1991, E.L. Rooy, ed., TMS, Warrendale, PA, 1991, pp. 945–51.

    Google Scholar 

  6. H.G. Fjaer and A. Mo: in Light Metals 1995, J. Evans, ed., TMS, Warrendale, PA, 1995, pp. 951–59.

    Google Scholar 

  7. Y. Caron and A. Larouche: in Light Metals 1996, W. Hale, ed., TMS, Warrendale, PA, 1996, pp. 963–69.

    Google Scholar 

  8. H. Yu: in Light Metals 1980, TMS, Warrendale, PA, 1980, pp. 613–28.

    Google Scholar 

  9. Wagstaff, Inc.: U.S. Patent 4, 693, 298, 1987.

  10. N.B. Bryson: U.S. Patent 3, 411, 079, 1969.

  11. W. Schneider and E.K. Jensen: in Light Metals 1990, C.M. Bickert, ed., TMS, Warrendale, PA, 1990, pp. 931–36.

    Google Scholar 

  12. W. Schneider, E.K. Jensen, and B. Carrupt: in Light Metals 1995, J. Evans, ed., TMS, Warrendale, PA, 1995, pp. 961–67.

    Google Scholar 

  13. H.G. Fjaer and A. Mo: Metall. Trans. B, 1990, vol. 21B, pp. 1049–61.

    CAS  Google Scholar 

  14. E.K. Jensen and W. Schneider: in Light Metals 1990, C.M. Bickert, ed., TMS, Warrendale, PA, 1990, pp. 937–43.

    Google Scholar 

  15. H.G. Fjaer and E.K. Jensen: in Light Metals 1995, J. Evans, ed., TMS, Warrendale, PA, 1995, pp. 951–59.

    Google Scholar 

  16. E.K. Jensen and W. Schneider: in Light Metals 1995, J. Evans, ed., TMS, Warrendale, PA, 1995, pp. 969–78.

    Google Scholar 

  17. B. Hannart, F. Cialti, and R.V. Schalkwijk: in Light Metals 1994, U. Mannweiler, ed., TMS, Warrendale, PA, 1994, pp. 879–87.

    Google Scholar 

  18. J.-M. Drezet and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3214–24.

    CAS  Google Scholar 

  19. J.B. Wiskel and S.L. Cockcroft: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 119–27.

    Article  CAS  Google Scholar 

  20. J.B. Wiskel and S.L. Cockcroft: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 29–137.

    Google Scholar 

  21. J. Du, B.S.-J. Kang, K.-M. Chang, and J. Harris: in Light Metals 1998, B. Welch, ed., TMS, Warrendale, PA, 1998, pp. 1025–29.

    Google Scholar 

  22. H.G. Fjaer, D. Mortensen, A. Hakonsen, and E. Sorheim: in Light Metals 1999, C.E. Eckert, ed., TMS, Warrendale, PA, 1999, pp. 743–48.

    Google Scholar 

  23. W. Droste, J.-M. Drezet, G.-U. Grun, and W. Schneider: in Continuous Casting, K. Ehrke and W. Schneider, eds., Wiley-VCH, New York, NY, 2000, pp. 177–83.

    Google Scholar 

  24. J. Sengupta, D. Maijer, M.A. Wells, and S.L. Cockcroft: Proc. Brimacombe Memorial Symp., Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 2000, pp. 673–684.

    Google Scholar 

  25. J. Sengupta, D. Maijer, M.A. Wells, S.L. Cockcroft, and A. Larouche: in Light Metals 2001, J.L. Anjier, ed., TMS, Warrendale, PA, 2001, pp. 879–85.

    Google Scholar 

  26. J. Sengupta, S.L. Cockcroft, D. Maijer, M.A. Wells, and A. Larouche: J. Light Met., 2002, No. 2, pp. 137–48.

  27. D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13B, pp. 593–602.

    CAS  Google Scholar 

  28. W. Schneider and W. Reif: Proc. 6th Arab Int. Aluminum Conf. (ARABAL ’93), Arab Federation for Engineering Industries, Cairo, Egypt, 1994, pp. 173–90.

    Google Scholar 

  29. K. Ho and R.D. Pehlke: Metall. Trans. B, 1985, vol. 16B, pp. 585–94.

    CAS  Google Scholar 

  30. Y. Nishida, W. Droste, and E. Engler: Metall. Trans. B, 1986, vol. 17B, pp. 833–44.

    CAS  Google Scholar 

  31. M. Trovant and S. Argyropoulos: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 927–31.

    Google Scholar 

  32. H.G. Fjaer and A. Hakonsen: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 683–90.

    Google Scholar 

  33. H. Kraushaar, R. Jeschar, V. Heidt, E.K. Jensen, and W. Schneider: in Light Metals 1995, J. Evans, ed., TMS, Warrendale, PA, 1995, pp. 1055–59.

    Google Scholar 

  34. J. Langlais, T. Bourgeois, Y. Caron, G. Beland, and D. Bernard: in Light Metals 1995, J. Evans, ed., TMS, Warrendale, PA, 1995, pp. 979–86.

    Google Scholar 

  35. L. Maenner, B. Magnin, and Y. Caratini: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 701–07.

    Google Scholar 

  36. A. Larouche, Y. Caron, and D. Kocaefe: in Light Metals 1998, B. Welch, ed., TMS, Warrendale, PA, 1998, pp. 1059–64.

    Google Scholar 

  37. A. Larouche, J. Langlais, T. Bourgeois, and A. Gendron: in Light Metals 1999, M. Bouchard and A. Faucher, eds., TMS, Warrendale, PA, 1999, pp. 235–45.

    Google Scholar 

  38. I.J. Opstelten and J.M. Rabenberg: in Light Metals 1999, C.E. Eckert, ed., TMS, Warrendale, PA, 1999, pp. 729–35.

    Google Scholar 

  39. J. Zuidema, Jr., L. Katgerman, I.J. Opstelten, and J.M. Rabenberg: in Light Metals 2001, J.L. Anjier, ed., TMS, Warrendale, PA, 2001, pp. 873–78.

    Google Scholar 

  40. D. Li, M.A. Wells, and G. Lockhart: in Light Metals 2001, J.L. Anjier, ed., TMS, Warrendale, PA, 2001, pp. 865–71.

    Google Scholar 

  41. M.A. Wells, D. Li, and S.L. Cockcroft: Metall. Mater. Trans. B, 2000, vol. 32B, pp. 929–39.

    Google Scholar 

  42. L.I. Kiss, T. Meenken, A. Charette, Y. Lefebvre, and R. Levesque: Light Metals 2002, W. Schneider, ed., TMS, Warrendale, PA, 2002, pp. 981–85.

    Google Scholar 

  43. J.A. Bakken and T. Bergstrom: in Light Metals 1986, TMS, Warrendale, PA, 1986, pp. 883–89.

    Google Scholar 

  44. E.K. Jensen, S. Johansen, Bakken, T. Bergstrom, and J.A. Bakken: in Light Metals 1986, TMS, Warrendale, PA, 1986, pp. 891–96.

    Google Scholar 

  45. Y. Watanabe and N. Hayashi: in Light Metals 1996, W. Halen, ed., TMS, Warrendale, PA, 1996, pp. 979–84.

    Google Scholar 

  46. J.-M. Drezet, G.-U. Gruen, and M. Gremaud: in Light Metals 2000, R.D. Peterson, ed., TMS, Warrendale, PA, 2000, pp. 585–90.

    Google Scholar 

  47. D.C. Weckman and P. Niessen: Can. Metall. Q., 1984, vol. 23 (2), pp. 209–16.

    Google Scholar 

  48. J.F. Grandfield, A. Hoadley, and S. Instone: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 691–99.

    Google Scholar 

  49. E.A. Sorheim, D. Mortensen, S. Benum, and C. Stette: in Light Metals 2002, W. Schneider, ed., TMS, Warrendale, PA, 2002, pp. 679–86.

    Google Scholar 

  50. E.D. Tarapore: Light Metals 1989, P.G. Campbell ed., TMS, Warrendale, PA, 1989, pp. 875–79.

    Google Scholar 

  51. G.P. Grealy, J. Lee Davis, E.K. Jensen, P.A. Tondel, and J. Moritz: in Light Metals 2001, J.L. Anjier, ed., TMS, Warrendale, PA, 2001, pp. 813–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, J., Cockcroft, S.L., Maijer, D.M. et al. On the development of a three-dimensional transient thermal model to predict ingot cooling behavior during the start-up phase of the direct chill-casting process for an AA5182 aluminum alloy ingot. Metall Mater Trans B 35, 523–540 (2004). https://doi.org/10.1007/s11663-004-0053-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0053-1

Keywords

Navigation